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English abstract

This thesis focuses on the classification of symmetry-protected topological (SPT)
phases in one-dimensional quantum many-body systems and the interplay with
nontrivial lattice or space group symmetries. The general starting point is an
injective matrix product state description of a symmetric quantum state. In
this framework, we can easily derive an SPT classification based on projective
representations and group cohomology. After a theoretical investigation, where
we systematically identify the cohomological structure behind the SPT classifi-
cation and try to unify the physical paradigm with the mathematical literature,
we numerically determine the classification for (small) symmetry groups and
compare them to the literature. At the same time, an explicit construction of
symmetric systems in terms of a matrix product state ansatz is given for any
SPT phase. We also show that the nontrivial spatial configurations fit in the
cohomological framework and try to generalize the results for on-site symme-
tries by including nontrivial space group symmetries. For some general cases, a
manifestly symmetric matrix product state is constructed. These constructions
are relevant for the optimization of numerical methods for simulating quantum
many-body problems.



Nederlandstalige samenvatting

Deze thesis richt zich op de classificatie van symmetrie-beschermde topologische
(SPT1) fasen in één-dimensionale kwantumveeldeeltjessystemen en de interactie
met niet-triviale rooster- of ruimtegroepsymmetrieën. Het algemene uitgangs-
punt is een injectieve matrix product toestand-beschrijving van een symmetri-
sche kwantumtoestand. Binnen dit framework is het eenvoudig om een classi-
ficatie van de mogelijke SPT fasen in termen van projectieve representaties en
groepscohomologie af te leiden. Naast een theoretische aanpak, waar we sys-
tematisch de achterliggende cohomologische structuur onderzoeken en waar we
een link proberen te leggen tussen de wiskundige en fysische literatuur, geven
we ook een numerieke methode waarmee de classificatie voor algemene symme-
triegroepen kan bepaald worden. Verder geven we ook een expliciete constructie
van kwantumsystemen die tot een gegeven SPT fase behoren in termen van een
matrix product toestand. Na aan te tonen dat de niet-triviale roostersymme-
trieën ook in een cohomologisch kader geplaatst kunnen worden, trachten we
een systematische classificatie te vinden van de SPT fasen indien de symmetrie-
groep roostertransformaties bevat. Voor enkele belangrijke gevallen wordt een
manifest symmetrische matrix product toestand geconstrueerd. Deze construc-
ties zijn onder meer interessant voor het optimaliseren van numerieke methodes
die gebruikt worden bij de simulatie van kwantumveeldeeltjesproblemen.

1Van het Engelse “symmetry-protected topological”.
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Chapter 1

Introduction

1.1 Outline
Since the dawn of quantum mechanics, it has been clear that solving equations for many-
body systems was an incredibly difficult task due to an exponential dependence of the
dimension on the number of involved particles. However, in the last couple of decades,
there was a strong influx of ideas from (quantum) information theory and this led people
to believe that not all hope was lost. The entanglement structure of low-energy quantum
states inspired researchers to come up with a new framework called tensor network states.
These specifically target the relevant part of the Hilbert space of quantum states. Aside
from their numerical advantage as a very efficient variational ansatz, they also contribute
to theoretical insights in the universal properties of quantum many-body systems and
even more exotic subjects such as conformal field theory.

Due to the local structure of tensor networks they are especially suited for describing
topological order in quantum systems such as symmetry-protected topological phases. A
nearly complete classification of symmetry-protected topological phases for on-site sym-
metries has already been constructed using tensor networks. However, the interplay with
space group symmetries is not yet clear and this is what we hope to achieve: to give
a unified description of ground state tensor works with both on-site and space group
symmetries.

The structure of this thesis is as follows. In the first chapter, we start by giving a general
introduction to the theory of tensor network states and, more specifically, matrix product
states. Then, we introduce the concept of topological order and explain how symmetries of
the physical system come into play. The classification of symmetry-protected topological
phases is given in the second chapter, where we use methods based on group cohomology.
We also explicitly construct for any solution to the relevant equations a matrix product
state satisfying the given symmetries. In chapter three, we consider systems where the
symmetry group is enlarged to allow for nontrivial lattice transformations. This gener-
alization is placed within the existing framework, some explicit examples are considered
and, for some relevant cases, we construct a manifestly symmetric normal form for the
matrix product ansatz. In the first appendix, we give an introduction to some mathemat-
ical concepts from abstract algebra such as representation theory and group cohomology

1



Chapter 1. Introduction 2

in more detail. In the second appendix, we introduce the graphical calculus of tensor
networks and we explain some relevant results from linear algebra.

1.2 Tensor network states
The introduction and study of tensor networks states (TNs) was motivated by the
search for an efficient way to handle the immense complexity of quantum many-body
systems. Consider for example a quantum mechanical system of N sites, where every site
has as a local state space a di-dimensional Hilbert space Hi (as shown in Fig. 1.1).

H1 H2 H3
· · ·

HN

Figure 1.1: System with N sites.

A general wave function for the total system, which is an element of the tensor product
space H1 ⊗ · · · ⊗ HN , can be expanded as follows:

|ψ⟩ =
∑

{i1,...,iN }
Ci1,...,iN |i1 · · · iN⟩ , (1.1)

where the sum ranges over all possible combinations of the physical indices ik. Because
there are N Hilbert spaces Hi, each with a dimension di, the total Hilbert space has the
dimension d1d2 · · · dN . In terms of the above expansion, this means that we have to specify
d1 · · · dN complex numbers Ci1,...,iN , one for every combination of the indices, to give a full
description of the wave function. This exponential growth of the necessary information
with respect to the number of sites makes an exact numerical approach unfeasible for
realistic physical systems, which typically have a number of sites of the order of the
Avogadro constant (∼ 1023).

However, it was found [19, 25] that the relevant quantum states for a system described by
a local gapped1 Hamiltonian satisfy an area law for the bipartite entanglement entropy

S = − tr(ρA ln ρA) (1.2)

i.e. if we consider a subsystem A of the complete system, the entropy S only depends on
the number of sites on the boudary ∂A. These states occupy an exponentially small subset
of the total Hilbert space and hence it should be possible to find an efficient description
of these states. A very efficient variational approach to this problem is given by tensor
network states [44, 45]. As we are only concerned with one-dimensional systems in this
thesis, we will limit ourselves to the description of one-dimensional tensor networks known
as matrix product states (MPS). It is a well-known result that this ansatz can be used
to approximate one-dimensional states to arbitrary precision [58].

1.2.1 Matrix product states
Consider a quantum state |ψ⟩ for a 1D lattice with open boundary conditions described by
a coefficient tensor C. The Schmidt decomposition allows for a powerful decomposition

1This means that even in the thermodynamic limit (N → ∞) there exists an energy gap between the
groundstates and the first excitations.
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of C in terms of tensor of lower rank due to Vidal [60]. We first make a cut between the
first site and the rest. The associated Schmidt decomposition gives us:

|ψ⟩ =
d1∑
i=1

λi[1]|αi[1]⟩ ⊗ |Φi[2, 3, . . . , N ]⟩ (1.3)

The states |αi[1]⟩ can then be rewritten in terms of the local (physical) basis of site 1:

|αi[1]⟩ =
d1∑
j=1

Γji [1]|sj[1]⟩ (1.4)

Similarly one can express the state |Φi[2, 3, . . .]⟩ in terms of the local basis of site 2:

|Φi[2, 3, . . . , N ]⟩ =
d2∑
j=1

|sj[2]⟩ ⊗ |χi,j[3, . . . , N ]⟩ (1.5)

We now make a cut between sites 2 and 3 and express the states |χi,j⟩ in terms of the
right Schmidt vectors associated to this cut:

|χi,j[3, . . . , N ]⟩ =
d1d2∑
k=1

Γji,k[2] λk[2]|Φk[3, . . . , N ]⟩ (1.6)

Inserting all these steps in the formula for |ψ⟩ gives us:

|ψ⟩ =
∑
i1,i2

∑
j,k

(
Γi1j [1] λj[1] Γi2j,k[2] λk[2]

)
|si1 [1]⟩ ⊗ |si2 [2]⟩ ⊗ |Φk[3, . . . , N ]⟩ (1.7)

where the indices are bounded in the folowing way:
1 ≤ i1 ≤ d1

1 ≤ i2, j ≤ d2

1 ≤ k ≤ d1d2

(1.8)

This process can now be applied iteratively to obtain the following decomposition of C:

Ci1i2...iN =
{dk}∑
{ik}

∑
{ji}

Γi1j1 [1] λj1 [1] Γi2j1,j2 [2] λj2 [2] Γi3j2,j3 [3] · · · ΓiNjN−1 [N ] (1.9)

where the ji run from 1 to min (dim(H1 ⊗ · · · ⊗ Hi), dim(Hi+1 ⊗ · · · ⊗ HN)). To conclude,
we can rewrite this decomposition by introducing the following tensors:A[1] = Γ[1] ,

Aikm,n[k] = λm[k − 1]Γikm,n[k] .
(1.10)

This way, we can graphically2 represent the coefficient Ci1i2...iN as in Fig. 1.2.

From this construction, it should, however, still be clear that the complexity grows ex-
ponentially in the number of sites. The ability to solve this problem lies in the use of
the Schmidt decomposition. First of all, not all Schmidt values will be nonzero, so there
could arise a natural cut-off on the number of relevant degrees of freedom (e.g. due to

2See Section B.1 in the appendix for an introduction to the graphical calculus of tensor networks.
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A[1] A[2] · · · A[N ]

i1 i2 iN

Figure 1.2: Graphical representation of a finite-size MPS.

the area law) and even if this was not the case one could impose an artificial cut-off by
retaining only the D largest Schmidt values. This value D is called the bond dimension3.
For a system with n sites, physical dimensions {di}i≤n and bond dimensions {Di}i≤n, the
MPS state space AMPS has dimension

dim(AMPS) =
n∑
i=1

Di−1diDi , (1.11)

which clearly scales only polynomially in the number of sites.

A different but equivalent construction uses maximally entangled pairs and is based on
the valence bond construction. Between every neighbouring pair of sites, we place a
maximally entangled pair

|ω⟩i =
D∑
k=1

|k⟩ ⊗ |k⟩ ∈ HR
i ⊗ HL

i+1 , (1.12)

where we introduced the virtual Hilbert spaces HL
i ,HR

i for each site i ≤ N . Then, we
define MPS projectors4 Pi : HL

i ⊗ HR
i → Hi:

Pi =
di∑
k=1

Di−1∑
α=1

Di∑
β=1

P k
α,β |k⟩ ⊗ ⟨α| ⊗ ⟨β| , (1.13)

where, in general, both the physical and virtual dimensions d,D depend on the site index i.
The product operator ⊗i≤NPi then maps the tensor product of all entangled pairs to a
state in the physical many-body Hilbert space ⊗i≤NHi.

This construction is motivated by the well-known AKLT model [2], which was the first
model proposed to describe the Haldane phase for a spin-1 chain. As the local two-site
Hamiltonian, one takes the projector P(2) : C3 ⊗ C3 → C5 on the spin-2 subspace. The
groundstate can then be constructed (Fig. 1.3) as the kernel of this projector by placing
the maximally entangled singlet state

|α⟩ ≡ 1√
2

(|↑↓⟩ − |↓↑⟩) (1.14)

between every pair of neighbouring sites and, then, projecting onto the spin-1 subspace
at every site.

From the maximally entangled pair construction, we can easily deduce the area law for en-
tanglement entropy. First of all, we recall the so-called ‘monogamy of entanglement’ [15],

3In fact the upper limits of the indices ji in Eq. (1.9) are also called the (local) bond dimensions.
4The name ‘projector’ should not be taken too seriously from a mathematical viewpoint as the oper-

ators do not satisfy P2 = P.



Chapter 1. Introduction 5

· · · · · ·
|α⟩k,k+1 |α⟩k+1,k+2 |α⟩k+2,k+3

· · · · · ·

P(1)
k

P(1)
k+1 P(1)

k+2 P(1)
k+3

ik ik+1 ik+2 ik+3· · · · · ·

Figure 1.3: Ground state construction of AKLT model.

i.e. the constituents of a maximally entangled pair cannot be entangled to a third particle.
This implies that an upper bound5 to the entanglement entropy between a subregion and
its environment can be calculated by assuming that the subregion is correlated to the
rest of the system exclusively through the maximally entangled pairs. To calculate the
entanglement entropy, we thus only have to look at how many entangled pairs are cut by
the boundary of the region. The entanglement entropy of a single maximally entangled
state of dimension D is:

S(ρME) = − tr (ρME ln ρME)

= −
D∑
i=1

1
D

ln
( 1
D

)
= ln(D) , (1.15)

where ρME = ∑D
i=1

1
D

|i⟩ ⟨i|. Because the projected pair construction uses 2-site projectors,
the maximal amount of pairs through which the subregion and environment are entangled
is given by the length of the boundary L (see Fig. 1.4) and, if we have chosen a bond
dimension D, the entanglement entropy is bounded as follows:

S(ρ) ≤ ln
(
DL

)
= L ln(D) . (1.16)

For a 1D chain (the case of MPS), the boundary always consists of two sites and, hence,
the upper bound of S(ρ) is even independent of the system size.

L

Figure 1.4: Subregion of lattice (in 2D) with boundary length L = 14.

Matrix product states have a long history. The translation-invariant case can be traced
back to the work on finitely correlated states [20]. Eventually, they were also found to

5The local projectors cannot increase the entanglement.
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constitute the underlying structure of the famous density matrix renormalization group
algorithm [49, 64] which is still the most succesful method for simulating equilibrium
properties of quantum systems (on a lattice). At the same time, they also form the
backbone of an important algorithm for the time-evolution of quantum systems, the time-
evolving block decimation (TEBD) algorithm [16]. Recently, they have even been applied
to fermionic systems [7] and quantum gauge theories [9].

1.2.2 Injective MPS
An important subclass of matrix product states is given by the injective matrix prod-
uct states. Multiple equivalent definitions exist (see for example [47]), but here we will
consider only the two most important ones.

Definition 1.1 (Injective MPS). An MPS A is said to be injective if there exists a
number n ∈ N0, called the injectivity length, such that after blocking by n sites the
(blocked) matrices Ai1 [1] · · ·Ain [n], where ik runs over the physical dimension, span the
full matrix algebra MD(C).

Consider the operator E[A] = ∑d
i A

i ⊗ Ai, called the transfer operator6. An alternative
definition of injective MPS is based on the spectrum of this operator:

Definition 1.2 (Injective MPS, bis). An MPS is said to be injective if the associated
transfer operator has a unique maximal eigenvalue, i.e. E has a unique eigenvalue λ such
that |λ| = ρ(E). We will always assume that the spectral radius ρ(E) is normalized.

So in graphical notation we have that A is injective if there exists only one eigenvector ψ
such that:

ψ = α

 ψ
 with |α| = 1. (1.17)

The injectivity of an MPS implies a couple of useful relations. Consider a matrix X which
commutes with all the matrices Ai. Because the Ai span (potentially after blocking) all
of MD(C), we know that X has to be an element of the center of the square complex
matrices. It is known that the center Z(MD(C)) consists only of the scalar multiples of
the identity and hence we obtain:(

∀i ≤ d : [X,Ai] = 0
)

=⇒ X = λ1, λ ∈ C (1.18)

One can generalize this property by considering an equation of the form

XAi = eiφAiX (1.19)

where X and φ are independent of the index i ≤ d. For an injective MPS we know that,
6See for example [24] for the definition and applications of the transfer operator and the relation to

the structure of matrix product states.
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by definition, Eq. (1.17) is valid:

ψ = ψ (1.20)

Using Eq. (1.19), we can, however, show that the eigenvector ψ multiplied by X from the
left is also an eigenvector of the transfer operator with an eigenvalue of modulus 1:

ψ

X

= eiφ

 ψ
X

 = eiφ

 ψ
X

 (1.21)

By injectivity, this is only possible if φ = 0 and X = λ1. In a similar way, we can prove
the following statement which will be a cornerstone of this thesis.

Theorem 1.1 (Fundamental theorem). Let the rank-3 tensor A define an injective
translation-invariant MPS. If for every physical index i ≤ d, where d is the dimension of
the physical Hilbert space, the condition

eiχY AiY −1 = eiφXAiX−1 (1.22)

is satisfied, we can conclude two things:

1. χ− φ = 0 mod 2π, and

2. X−1Y = eiψ1 for some ψ ∈ R.

For a general statement and treatment, see [17, 24].

1.2.3 Higher dimensions
The maximally entangled pair construction can easily be generalized to higher dimensions
and gives rise to so-called projected-entangled pair states (PEPS) [57, 59]. These form
the immediate generalization of MPS in dimension 2 and higher. Because in 2D there
exist nontrivial uniform tilings (see Fig. 1.5 for two examples), a richer theory emerges.
However, the construction always proceeds in the same way.

This of course implies that, in general, PEPS have a lot of properties in common with
matrix product states [45]. For example, they still satisfy an area law for the entanglement
entropy and, if we allow a high enough bond dimension, they can approximate any state
with arbitrary precision. However, there are important differences. While MPS cannot
describe a critical system, i.e. a system with polynomial (algebraic) correlation functions, a
higher-dimensional (d ≥ 2) PEPS can. The numerical implementations are also different.
For example, PEPS cannot be efficiently contracted without losing exactness nor does
there exist a canonical (orthonormal) form. In general, one has to resort to approximations
when computing expectation values and correlation functions with PEPS.
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(a) Square lattice. (b) Kagome lattice.

Figure 1.5: Uniform tilings of 2D space.

In addition to the MPS-like tensor networks, which are the most relevant for the ideas
explained in this thesis, there exists a variety of other structures. Important examples
are the multi-scale entanglement renormalization ansatz (MERA) [61] and the tree tensor
networks (TTN) [51]. The former is strongly related to entanglement renormalization
methods and is especially suited for simulating critical systems (even in 1D), while the
latter is useful for simulating systems with nonlocal interactions [43]. In contrast to PEPS,
these tensor networks allow for efficient and exact calculations of expectation values.

1.3 Symmetries
In general, all physical systems we encounter in nature exhibit some kind of symmetry,
be it a spatial symmetry like reflection symmetry or an internal symmetry like the spin
rotation symmetry in the Heisenberg chain. Solving the dynamics of these systems often
simplifies if we take the symmetries into account. The best example being an integrable
systems where the solution can be constructed solely from the conserved quantities asso-
ciated to the symmetries through Noether’s theorem.

Likewise, in a variational approach to many-body problems, it is useful to start from an
ansatz that already has the same symmetry group as the system we want to describe (or a
subgroup thereof in the case of symmetry breaking) because this reduces the number of a
priori possible solutions. Therefore, part of this thesis will be dedicated to finding certain
constraints on the variational ansatz (MPS in this case), or even to construct a manifestly
symmetric form that that can be used as a starting point for numerical methods.

1.3.1 Symmetry-protected topological order
Before the advent of topological phenomena in physics, the general framework for un-
derstanding phases and phase transitions was the Landau–Ginzburg paradigm. In this
framework, the primary quantity is the order parameter ξ (or the Higgs field in field
theories). This parameter can, for example, be used to give a distinction between the dis-
ordered symmetric phase (ξ = 0) and the ordered symmetry-broken phase (ξ ̸= 0). From
the group theory point of view one looks at the symmetry group G of a class of Hamil-
tonians describing the system. The different phases are then classified by the quotient
groups G/H, where H is the symmetry group of the symmetry-broken state describing a
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certain phase. The main example being the Bardeen–Cooper–Schrieffer (BCS) description
of superconductivity [4], where the formation of Cooper pairs breaks the U(1) symmetry
group to a discrete Z2 subgroup.

However, in the last couple of decades of the 20th century, physical phenomena were
discovered in which different phases had the same symmetries and, hence, could not be
explained by the Landau–Ginzburg paradigm. One of the most important examples is
the fractional quantum Hall effect [39, 54]. To accompany these discoveries, the concept
of topological order was introduced.

Definition 1.3 (Topological order). Two gapped quantum states |ψ1,2⟩ are said to be
in the same phase if they can be realized as the ground state of two Hamiltonians Ĥ1,2

such that there exists a (smooth7) homotopy Ĥ(t) between Ĥ1 and Ĥ2, i.e. there exists a
continuous path of gapped Hamiltonians between Ĥ1 and Ĥ2.

A different, but equivalent, definition is that two quantum states are in the same phase if
there exists a local unitary (LU) transformation8 (local quantum circuit) connecting the
two states [12]. A state with trivial topological order is then a quantum state which can
be transformed into a product state by such a quantum circuit.

In the above definitions, there was no mention of the possible symmetries of the system
and accordingly this type of order is called intrinsic topological order. There also exists
a notion of symmetry-protected topological (SPT) order which does take into account the
symmetries of the system. These are the phases with which we are concerned in this
thesis and they are defined slightly more general than the intrinsic case.

Definition 1.4 (SPT order). A quantum state belongs to a nontrivial SPT phase if
it cannot be transformed to a product state by an LU tranformation that preserves the
symmetry of the system. It should be noted that SPT phases are not truly intrinsic
topological phases because it is possible to find an LU transformation which breaks the
symmetry but maps the state to a product state.

In the case of injective MPSs, it has been shown [48] that a symmetry constraint on
the physical level can be translated to a constraint on the virtual level. By using these
relations together with the group structure of the symmetries, one can construct a clas-
sification of SPT phases. This classification is based on the algebraic framework of group
cohomology [11, 14]. The whys and the hows of this cohomological approach are ex-
plained in detail in Chapter 2, but essentially one uses the content of Theorem 1.1 to
extract topological indicators which follow from the conditions of group cohomology. It
has been shown that this data only depends on the phase of the system and not on the
specific state itself [13] and thus by finding all indicators we find a classification of all
SPT phases.

The theory becomes even more interesting when we consider not only on-site symmetry
groups, but also nontrivial lattice transformations (such as reflections or rotations) that
leave the system invariant. In this thesis, we will limit ourselves to one spatial dimension

7Meaning that the energy gap does not close.
8This is defined as the finite time evolution generated by a local Hamitonian.
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and, although there are not that many possibilities, it can serve as a good introduction
to get acquainted with the nontrivial consequences of lattice symmetries before moving
on to the more exotic cases in two dimensions and higher.

1.4 Cohomology theory
In general, (co)homology theories are used for obstruction and classification problems,
both in physics and mathematics, by reducing problems in, for example, geometry to,
often simpler, problems in algebra. This line of work started roughly around the middle
of 19th century with the work of Riemann on the concept of genus [40]. This work was
continued by people like Betti and Poincaré. They founded what would now be called
simplicial homology. The first ideas leading up to the birth of cohomology can be traced
back to the work of Poincaré on Poincaré duality (e.g. Analysis Situs, 1895)9. The relation
with algebra was only formally made by Noether during her lectures in the 1920s, but until
the 1940’s (co)homology theory mostly remained a part of (algebraic) topology. However,
around the time of World War II10, these techniques were applied to problems in algebra,
which brought about a revolution. Homological algebra [1] was born and (co)homology
theories really started to arise everywhere, one example being group cohomology theory,
which will be of interest in thesis.

Now, although the framework of cohomology theory might seem to be rather esoteric and
abstract, it has a lot of applications in physics. For example, group cohomology, which we
introduce in the next chapter, is used to classify both crystallographic groups and SPT
phases (both in arbitrary dimensions). Other examples in the field of condensed matter
theory are the classification of topological insulators and superconductors by Kitaev using
K-theory11 [38] or the classification of topologically ordered systems using Chern numbers
as in the quantum Hall effect [3]. But even outside this field, cohomology theories pop up
everywhere: in quantum field theory, both the BRST quantization procedure [5] and the
framework of gauge theories (e.g. Yang–Mills theory) use cohomology theory. One does not
even have to stroll this far into the world of theoretical physics to encounter cohomology.
Even simple things such as the concept of mass in quantum mechanics [29], Maxwell’s
equations12 or even Kirchhoff’s laws of electrical currents13 [63] can be understood in the
context of cohomology theory.

9However, this paper was flawed (he and others corrected it later) and the true cohomological form of
Poincaré duality was only introduced in 1930 by work of C̆ech and Whitney.

10One of the most important techniques (sheaf cohomology and spectral sequences) was introduced by
Leray while he was detained in a prisoner-of-war camp.

11This is what algebraic topologists would call a generalized cohomology theory.
12This is closely related to cohomology theory behind Yang–Mills theories.
13Even as soon as 1923.



Chapter 2

Cohomological SPT classification

In general, when we start learning quantum mechanics, we are told that the space of
possible states is a (separable) Hilbert space H (over the complex numbers) and the
physical operations are implemented by linear operators in GL(H) or even in U(H). A
representation of a symmetry group1 G is then given by a representation of G, i.e. a group
morphism G → GL(H).

However, as is well-known, the state of a quantum system is only defined up to an arbitrary
phase eiφ ∈ U(1). So the correct setting to work in is not the Hilbert space H but
its projectivization P(H) = H/C×, where C× denotes the invertible (nonzero) complex
numbers. Due to this U(1)-invariance, the requirement that symmetries are implemented
by unitary operators is too strong as was shown by Wigner [65]. The correct notion is
that of a ray or projective representation2, i.e. a group morphism G → PGL(H). The
general property of a projective representation (when viewing it as a function into the
general linear group) is:

V (gh) = eiω(g,h)V (g)V (h) (2.1)

for every two group elements g, h. In Section A.2 in the appendix, a more formal in-
troduction to the relation between (projective) representations and group cohomology is
given.

2.1 On-site symmetries
Consider a translation-invariant (TI) system on a 1D lattice Λ with an on-site symmetry
group G. Given a representation3 Û : G → GL(H1) on the single-site Hilbert space, a
representation G → GL(H) on the full lattice is constructed as Û(g)⊗· · ·⊗ Û(g). (We do
not go into detail about how the tensor product H = ⊗

i∈Λ H1 can be given the structure
of a Hilbert space in a well-defined way.)

1See Section A.1.2 in the appendix for more information.
2In fact, his theorem also allows for antilinear operators, a fact which will become important for our

story later on.
3The reason why the representation on the physical level is required to be linear instead of projective

can be found in [13].

11
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Because all MPS tensors are equal (see Section 3.2.1 below), the on-site symmetries are,
taking into account the projective nature of the state space, implemented in the following
way [48]: ∑

j

Uij(g)Aj = φ(g)X(g)−1AiX(g) (2.2)

for all g ∈ G. Here, U : G → GL(H) is the linear representation of G on the physical
single-site Hilbert space as constructed above and the morphism φ : G → U(1) ⊂ GL(H)
forms a 1D linear representation of G.

Using the graphical notation, the equation above is visualised as in diagram 2.1 below.
This way it is clearer that a symmetry operation Ûg on the physical level is equivalent
to an operation Xg on the virtual level (up to a phase factor which was drawn in the
diagram).

=

g

X−1
g Xg

Figure 2.1: MPS symmetry.

If the operators X(g) are required to satisfy the above relation, they do not have to
form a linear representation, i.e. they do not have to satisfy X(gh) = X(g)X(h). By
the fundamental theorem 1.1, they are also allowed to form a projective representation:
X(gh) = eiω(g,h)X(g)X(h) and, hence, this is entirely consistent with the discussion of
Wigner’s theorem in the introduction to this chapter.

One of the defining properties of a group is the associativity axiom and, because a (pro-
jective) representation is a group morphism, we obtain the following condition on the
function ω : G×G → S1 ∼= R/Z:

ω(g1g2, g3) + ω(g1, g2) = ω(g1, g2g3) + ω(g2, g3) , (2.3)

where equality is understood up to a multiple of 2π.4 This condition is called the cocycle
condition. There is, however, some freedom in the choice of the function ω. We can
rescale the representation ρ as ρ′(g) = eiφ(g)ρ(g) and this induces the rescaling ω′(g, h) =
ω(g, h) +φ(gh) −φ(g) −φ(h). The last three terms in ω′ form a function which is known
as a coboundary.

From Section A.2, it follows that the set of cocycles modulo the set of coboundaries forms
a group H2(G; U(1)). Picking an element in this group is equivalent to picking a certain
projective representation of G, so the different SPT phases corresponding to an on-site
symmetry are partially classified by the cohomology group H2(G; U(1)) with trivial action.

These classes can also be given a more physical interpretation. Consider the entangled pair
construction of an MPS given in Section 1.2.1, where every site is decomposed as a pair

4In the literature, one often encounters this formula in its multiplicative form where ω is then under-
stood as a function G × G → U(1). However, due to the isomorphism S1 ∼= U(1) these two perspectives
are equivalent.
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of states. Now, consider a finite subchain of the 1D lattice (in the case of open boundary
conditions one can take the whole lattice) as indicated by a yellow box in Fig. 2.2. In
the bulk of the lattice, the phase factors eiω and e−iω cancel out, but on the boundaries
they remain. For systems with open boundary conditions, these give rise to so-called edge
modes/states.

ω -ω ω -ω ω -ω ω -ω ω -ω· · · · · ·

Figure 2.2: Finite chain.

The second part of the classification follows from the presence of the linear representation
φ in Eq. (2.2). The defining relation of a 1D linear representation is:

φ(gh) = φ(g) + φ(h) (2.4)

and this is exactly the same as Eq. (A.15) for a 1-cocycle (again with trivial action).
Hence, the remaining part of the classification of SPT phases with on-site symmetry
groups for TI systems is given by the first cohomology group H1(G; U(1)).

2.1.1 Gauge matrices
Here, we give some explanation on what the structure of the gauge matrices X is. Above,
we only required them to be invertible, but, in fact, a stronger condition can be derived.
For a general (injective) MPS, it can be proven [46] that there always exist a gauge
transformation such that we obtain the following condition:

dm∑
i=1

(
Ai[m]

)†
Ai[m] = 1 , (2.5)

where dm is the physical dimension of the site m. This form is called the left canonical
form5. Now, consider an on-site symmetry transformation

Ai −→ Ãi =
d∑
j=1

UijA
j = eiφX−1AiX . (2.6)

The formula above then changes accordingly:∑
i=1

(Ai)†Ai −→
∑
i=1

(Ãi)†Ãi =
∑
i=1

∑
k,l=1

Uik(Ak)†UilA
l

=
∑
i=1

∑
k,l=1

U †
ki(Ak)†UilA

l

=
∑
k,l=1

δkl(Ak)†Al

=
∑
k=1

(Ak)†Ak

= 1 (2.7)
5or left orthonormal form
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and, hence, the transformed MPS is still in the left canonical form. However, we could
also expand it as follows:

d∑
i=1

(Ai)†Ai −→
d∑
i=1

X†(Ai)†(X−1)†X−1AiX . (2.8)

Now, if these two expressions ought to be equal, we should have the following condition:
d∑
i=1

(Ai)†(X−1)†X−1Ai = (X−1)†X−1 . (2.9)

This implies that X should be unitary.

With the following sections in mind, we will also consider the cases of time-reversal and
reflection invariance. For time-reversal symmetry, we obtain the following transformation
rule:

Ai −→ Ãi =
d∑
j=1

UijAj = eiφX−1AiX . (2.10)

We can then perform a calculation similar to the on-site case:∑
i=1

(Ai)†Ai −→
∑
i=1

(Ãi)†Ãi =
∑
i=1

∑
k,l=1

Uik(Ak)†UilAl

=
∑
i=1

∑
k,l=1

U †
ki(Ak)†UilAl

=
∑
k,l=1

δkl(Ak)†Al

=
∑
k=1

(Ak)†Ak

=
∑
k=1

(Ak)†Ak

= 1 . (2.11)

So, a time-reversal operation leaves the MPS in left canonical form and we obtain that
the gauge matrix in the case of time-reversal symmetries is also unitary.

The last case to consider is that of a reflection. Of course, nature will not stay kind to
us and we will see that the gauge matrix for a reflection symmetry does not have to be
unitary. For reflection symmetry, we get the following transformation rule:

Ai −→ Ãi =
d∑
j=1

Uij(Aj)t = eiφX−1AiX . (2.12)

We can now again check if the canonical form is left unchanged under this transformation:∑
i=1

(Ai)†Ai −→
∑
i=1

(Ãi)†Ãi =
∑
i=1

∑
k,l=1

UikAkUil(Al)t

=
∑
i=1

∑
k,l=1

U †
kiA

kUil(Al)t

=
∑
k,l=1

δklAk(Al)t
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=
∑
k=1

Ak(Ak)t

=
∑
k=1

(
Ak(Ak)†

)t
. (2.13)

Now, by bringing the transpose outside of the summation, we do not get the expression of
the left canonical form, but it is still very similar. This similarity is explained by noting
that for an MPS there also exists a right canonical form given by following condition:

d∑
i=1

Ai(Ai)† = 1 . (2.14)

So, we see that a reflection interchanges the left and right canonical forms. To derive
that the gauge matrix for reflection symmetries is unitary, we should thus need that the
MPS is both in left and right canonical form. Because not every MPS satisfies this strong
condition, we will, in general, not assume the gauge matrices associated to a reflection
symmetry to be unitary.

2.2 Time-reversal
For on-site symmetries, we obtained an SPT classification based on group cohomology
with a trivial action. Including time-reversal as a symmetry operation will force us to
work with cohomology with nontrivial actions. In this paragraph, we will determine the
actions and generalize the classification to this more general setting. To this intent, we
consider a general symmetry group GT that contains a time-reversal generator of order 2.
In particular, we will assume the form G×Z2, where G is the on-site symmetry group. A
general element can be written as g±, where the subscript − indicates that the element
contains a time-reversal.

At this stage, we will not give a relation to projective representations. We will just start
with a physically motivated relation on the gauge matrices X(g) and in the last section
of this chapter, we will clarify what kind of representation the gauge matrices form. If we
denote by Ĉg the operation of taking the complex conjugate if g = g−, the gauges ought
to satisfy the following relation:

X(gh) = eiω(g,h)X(g)Ĉg
[
X(h)

]
, (2.15)

where ω is still an arbitrary function G×G → S1 at this point. This result can be derived
if all symmetry operations are implemented as U(g)Ĉg on the physical level.

Proof. To include time-reversal symmetry, we first have to modify Eq. (2.2):∑
j

Uij(g)Ĉg[Aj] = φ(g)X(g)−1AiX(g) . (2.16)

Acting with a product gh ∈ GT (here, we choose h to be purely on-site) gives:

φ(gh)X(gh)−1AiX(gh) = φ(g)Ĉg
[
φ(h)

]
Ĉg
[
X(h)−1

]
X(g)−1AiX(g)Ĉg

[
X(h)

]
. (2.17)

Comparing both sides gives us Eq. (2.15) as desired (again by applying the fundamental
theorem 1.1). A second consequence is that the phase factors φ(g) do not form a 1D
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linear representation anymore. They now satisfy a more general 1-cocyle condition:

φ(gh) = φ(g) + β(g)φ(h) , (2.18)

where the action β : GT → Z2 : g± 7→ ±1 is induced by complex conjugation.

To find the generalization of the projective representations, we apply the same procedure
as for on-site symmetries. If we act on the MPS tensor Ai with a triple product ghk ∈
GT , we can expand it in two ways using the associativity property. By the defining
equation 2.15, we obtain the following equality:

X(ghk) = eiω(gh,k)X(gh)Ĉgh
[
X(k)

]
= eiω(gh,k)+iω(g,h)X(g)Ĉg

[
X(h)

]
Ĉgh

[
X(k)

]
. (2.19)

On the other hand, associativity also requires this equation to be equal to:

X(ghk) = eiω(g,hk)X(g)Ĉg
[
X(hk)

]
= eiω(g,hk)X(g)Ĉg

[
eiω(h,k)X(h)Ĉh

[
X(k)

]]
. (2.20)

We can combine the occurrences of the operation t in a general product gh ∈ GT such that
ĈgĈh = Ĉgh and, hence, the above two expressions are equal if and only if the following
relation holds for all group elements g, h, k ∈ GT :

ω(gh, k) + ω(g, h) = ω(g, hk) + αT (g)ω(h, k) . (2.21)

This is a 2-cocycle condition with the action αT : GT → Z2 : g± 7→ ±1 induced by
complex conjugation.

We can conclude that the SPT classification (for TI systems) in the case of on-site symme-
tries together with time-reversal symmetry is characterized by an element inH2

αT
(GT ; U(1))

and an element in H1
β(GT ; U(1)).

2.2.1 Physical representation
As in previous section on on-site symmetries we should also consider which representations
are allowed on the physical level. By assumption, the time-reversal operator is of order 2,
so to find the possible representations, we have to calculate H2

αT
(Z2; U(1)). The cocycle

equations in this case are:

αT (e)ω(e, e) − ω(e, e) + ω(e, e) − ω(e, e) = 0
αT (e)ω(e, t) − ω(e, t) + ω(e, t) − ω(e, e) = 0
αT (e)ω(t, e) − ω(t, e) + ω(e, t) − ω(e, t) = 0
αT (e)ω(t, t) − ω(t, t) + ω(e, e) − ω(e, t) = 0
αT (t)ω(e, e) − ω(t, e) + ω(t, e) − ω(t, e) = 0
αT (t)ω(e, t) − ω(t, t) + ω(t, t) − ω(t, e) = 0
αT (t)ω(t, e) − ω(e, e) + ω(t, t) − ω(t, t) = 0
αT (t)ω(t, t) − ω(e, t) + ω(t, e) − ω(t, t) = 0

(2.22)
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Using the normalization of the cocycles (see Section A.2.1 in the appendix), we see that
only the last condition is nontrivial. Solving it gives us:

ω(t, t) ∈ {0, π} . (2.23)

We thus obtain that H2
αT

(Z2; U(1)) ∼= Z2, which in turn implies that the time-reversal
subgroup has only two projective representations corresponding to T̂ 2 = ±1 (with T̂ the
physical representation of t ∈ Z2).

Now, let us check if both possibilities are physically realizable. The first case we should
check is for a uniform MPS. In this case, we obtain:∑

j

TijAj = eiφX−1AiX . (2.24)

Performing a second time-reversal then gives:

(±1)Ai = X−1X−1AiXX . (2.25)

From Theorem 1.1, it is immediately clear that only the +1 case is physically possible for
an injective uniform MPS (cf. [13]). But what about a system which is only translation
invariant up to a 2-site translation (this is relevant for the next chapter)? In this case,
we obtain: ∑

j

TijAj = eiφAX−1
A AiXB ,

∑
j

TijBj = eiφBX−1
B BiXA ,

(2.26)

or, after a second time-reversal:

(±1)Aj = X−1
A X−1

A AiXBXB ,

(±1)Bj = X−1
B X−1

B BiXAXA .
(2.27)

However, in this case Theorem 1.1 is not readily applicable. We first need to block the two
distinct sites. But, by doing this, the phase factor of the physical projective representation
T̂ will cancel out, i.e. (±1)2 = 1, and, hence, no obstruction can be obtained for the −1
case. This implies that for a system with a 2-site unit cell, we should also allow the case
T̂ 2 = −1 (also cf. [13]).

2.3 Reflection symmetry
Analogous to the previous section, we can consider a symmetry group GR that contains
a spatial reflection operation. We will now perform a short calculation to derive a result
similar to Eq. (2.15). As in the case of time-reversals, we will denote an element g ∈ GR

containing a reflection operation by gr. We will use the fact that in our framework
reflections are implemented by taking transposes of MPS matrices. This result will be
proven in the next chapter (see Eq. (3.21)).

Now, consider the product gh ∈ GR (we again choose h to be purely on-site). Acting with
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this product on an MPS tensor Ai gives the following equation:∑
j

Uij(gh)
(
Aj
)tg = φ(gh)X(gh)−1AiX(gh) , (2.28)

where the parametric transposition operator (·)tg only tranposes its argument if g ≡ gr.
We could also first act with h and then with g:∑

j

Ukj(h)Aj = φ(h)X(h)−1AkX(h) (2.29)

=⇒
∑
k

Uik(g)
∑

j

Ukj(h)Aj
tg = φ(g)φ(h)R̂g

[
X(h)−1

]
X(g)−1AiX(g)R̂g

[
X(h)

]
,

where the operator R̂g, induced by the parametric transposition operator, transposes and
inverts its argument if g ≡ gr. Combining these relations, we see that the gauge matrices
associated to symmetries in GR behave in the following way:

X(gh) = eiω(g,h)X(g)R̂g

[
X(h)

]
. (2.30)

Now, we can derive the cocycle conditions as in the case of time-reversal. Consider an
arbitrary triple product ghk ∈ GR. By associativity, we can expand this product in two
ways:

X(ghk) = eiω(gh,k)X(gh)R̂gh

[
X(k)

]
= eiω(gh,k)+iω(g,h)X(g)R̂g

[
X(h)

]
R̂gh

[
X(k)

] (2.31)

or

X(ghk) = eiω(g,hk)X(g)R̂g

[
X(hk)

]
= eiω(gh,k)X(g)R̂g

[
eiω(g,h)X(h)R̂h

[
X(k)

]]
.

(2.32)

Using the group relations of GR, we can again deduce that R̂gR̂h = R̂gh and, hence, we
obtain the same cocycle condition for ω as for GT :

ω(gh, k) + ω(g, h) = ω(g, hk) + αR(g)ω(h, k) . (2.33)

However, for the phase factors φ, it should be clear from the above calculations that in
the case of reflections we do not obtain a nontrivial cocycle condition and, hence, these
form an ordinary 1D linear representation:

φ(gh) = φ(g)φ(h) (2.34)

for all g, h ∈ GT .

We can conclude that the SPT classification (for TI systems) in the case of on-site symme-
tries together with reflection symmetry is characterized by an element in H2

αR
(GR; U(1))

and an element in H1(GR; U(1)).

At last, we want to remark that for unitary gauges6 taking the transpose inverse is the
6For on-site symmetries and time-reversal symmetry, we can always choose the gauge matrices to be

unitary by working, for example, in the left canonical gauge. However, for reflections, which interchange
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same as taking the complex conjugate and, hence, R̂ and Ĉ coincide in these cases.

2.4 Time-reversal and reflection symmetry
We can now combine the results derived in the last two sections in a straightforward man-
ner. Consider the symmetry group GTR that contains both time-reversal and reflection
operations. Because the derivations for GT and GR are completely independent, we can
simply combine the obtained results.

For the gauge matrices X in (the generalization of) Eq. (2.2), we obtain the following
2-cocycle condition:

ω(gh, k) + ω(g, h) = ω(g, hk) + αT (g)αR(g)ω(h, k) , (2.35)

where, as before, αT : GTR → {1,−1} is −1 if g contains a time-reversal and αR : GTR →
{1,−1} is −1 if g contains a reflection. These two morphisms can be combined into one
as follows:

α(g) =


+1 g is purely on-site
−1 g contains either a time-reversal or reflection
+1 g contains both a time-reversal and reflection

(2.36)

For the phase factors φ, we obtain the following 1-cocycle condition (which we again state
in the additive form, i.e. φ = eiχ):

χ(gh) = χ(g) + β(g)χ(h) , (2.37)

where β is the same morphism as in the case of time-reversal.

We can conclude that the SPT classification (for TI systems) in the case of on-site symme-
tries together with reflection and time-reversal symmetry is characterized by an element
in H2

α(GTR; U(1)) and an element in H1
β(GTR; U(1)).

2.5 Projective representations
For the above considerations, we did not really explain what the full structure of the
symmetry group was and how the 2-cocycle solutions where related to (projective) rep-
resentations. The only restriction on the symmetry group under consideration is that, if
they contain a time-reversal or reflection, then these generate Z2 subgroups.

Now, the best way to look at the problem is by considering how the gauge matrices change
under the action of a symmetry element. We assume w.l.o.g. that the MPS matrix is of
the form Z−1AZ, where Z can be a gauge matrix of a previous symmetry operation.
Then, three elementary possibilities occur:

an MPS in the left (resp. right) canonical gauge by one in the right (resp. left) canonical gauge, this
choice is not generally possible.
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• g is an on-site symmetry operation:

Z 7→ X(g)Z , (2.38)

• t is a time-reversal:

Z 7→ X(t)Z , (2.39)

• r is a reflection:

Z 7→ X(r)Z−t. (2.40)

So, now, define a map Υg that acts on the gauge matrices in the following way:

Υg : Z 7→ X(g)ĈgR̂g[Z] . (2.41)

This is a combination of the above three fundamental operations. Now, we can act with
a product gh ∈ G and play the same game as in the foregoing sections. We first act by h
and then by g:

ΥgΥh(Z) = Υg

(
X(h)ĈhR̂h[Z]

)
= X(g)ĈgR̂g

[
X(h)ĈhR̂h[Z]

]
= X(g)ĈgR̂g

[
X(h)

]
ĈghR̂gh[Z] . (2.42)

We can also act directly with the product:

Υgh(Z) = X(gh)ĈghR̂gh[Z] . (2.43)

If both results have to give rise to the same MPS, the fundamental theorem 1.1 says that:

Υgh = eiω(g,h)ΥgΥh (2.44)

and for the gauge matrices:

X(gh) = eiω(g,h)X(g)ĈgR̂g

[
X(h)

]
. (2.45)

By completely analogous calculations as in the foregoing sections, we can show that the
function ω satisfies the 2-cocycle condition (Eq. (A.16) in the appendix). So although the
gauge matrices X(g) do not form a projective representation anymore, the action of the
symmetry group on these matrices does.

On the other hand, we could also consider the structure on the gauge matrices as a
generalization of a representation. This gives rise to so-called unitary-antiunitary (UA)
representations as shown in Section A.2.4 in the appendix. Because time-reversal is imple-
mented by an antiunitary operation, we should not be surprised that this is passed down
to the virtual level. However, there is one important caveat. Although the gauge matrices
behave as a UA representation (Eq. (2.45)), they are still represented by matrices (linear
operators).

So, how do we reconcile these statements? First, we assume that all gauge matrices are
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represented (anti)unitarily, even in the case of reflection symmetry.7 This is only necessary
to obtain an exact mathematical correspondence, otherwise the correspondence is more of
an analogy. Then, we can assume that we really do have a (projective) UA representation
X̂ such that:X̂(g) is antiunitary g contains a time-reversal or8 reflection ,

X̂(g) is unitary otherwise .
(2.46)

It is not hard to check that the elements that do not contain a time-reversal nor reflection
together with those that contain both, form an order-2 subgroup of the complete symmetry
group. So, this is consistent with the definition in the appendix. Now, a projective UA
representation satisfies by definition:

X̂(gh) = eiω(g,h)X̂(g)X̂(h) . (2.47)

This is the same equation as for projective unitary representations, but now the operators
X̂ can be antiunitary operators. Every antiunitary operator A can be written9 as the
composition of a unitary operator U and a complex conjugation operator K (in some
basis):

A = UK . (2.48)

So, the projectivity condition above can be rewritten as follows:

X(gh)K(gh) = eiω(g,h)X(g)K(g)X(h)K(h) , (2.49)

where the parametric complex conjugation operator is defined as follows:

K(g) =
K g contains a time-reversal or10 reflection ,
1 otherwise .

(2.50)

Using the properties of the operator K, we can rewrite the equations above as:

X(gh)K(gh) = eiω(g,h)X(g)ĈgR̂g

[
X(h)

]
K(gh) , (2.51)

where the operator R̂ now also performs a complex conjugation if g contains a reflection
operation, since all gauge matrices are supposed to be unitary. If we drop the complex
conjugation operator, we obtain:

X(gh) = eiω(g,h)X(g)ĈgR̂g

[
X(h)

]
. (2.52)

We see that this equation is exactly the same as Eq. (2.45) and, hence, we obtain the
behaviour obeyed by the gauge matrices of a symmetric MPS. We conclude that the
generalization of systems with on-site symmetries to systems with both on-site, time-
reversal and reflection symmetries is given as follows:

SPT phases for systems with on-site symmetries are (partially) classified by
7This is, for example, the case in the AKLT model.
8exclusive or
9Equation (A.10) and onwards in the appendix.

10exclusive or
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projective unitary representations living on the boundary sites.ww�
SPT phases with on-site, time-reversal and reflection symmetries are
(partially) classified by projective unitary-antiunitary representations of the
pair (G,H), where H is the subgroup of elements containing either no time-
reversal or reflection or containing both, living on the boundary sites.

A similar statement holds for the phase factors eiφ(g) where the function φ(g) satisfies
the 1-cocycle condition (2.18). For on-site symmetries and reflection symmetries, we have
shown that these phases form a 1D unitary representation (cf. [14]). Like the generaliza-
tion of the projective representations above, we can regard the phase factors in the case
of time-reversal symmetries as a 1D unitary-antiunitary representation:

eiφ(gh)K(gh) = eiφ(g)K̃(g)eiφ(h)K̃(h)
= eiφ(g)Ĉg

[
eiφ(h)

]
K̃(gh)

= eiφ(g)eiβ(g)φ(h)K̃(gh) , (2.53)

where the parametric conjugation operator K̃ is now defined as:

K̃(g) =
K g contains a time-reversal ,
1 otherwise .

(2.54)

After dropping the complex conjugation operator, we indeed get the 1-cocycle condi-
tion Eq. (2.18) and so we obtain the following conclusion (for systems that are not
translation-invariant, only the the projective representations on the boundary spins are
relevant):

SPT phases for TI systems with on-site symmetries are classified by:

• A projective unitary representation of G living on the boundary sites.

• A 1D unitary representation of G characterizing the symmetry of each site.

ww�
SPT phases for TI systems with on-site, time-reversal and reflection symme-
tries are classified by:

• A projective unitary-antiunitary representation of the pair (G,H), where H
is the subgroup of elements containing either no time-reversal/reflection
or containing both, living on the boundary sites.

• A 1D unitary-antiunitary representatons of the pair (G, H̃), where H̃ is the
subgroup of elements containing a reflection, characterizing the symmetry of
each site.
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2.5.1 Projective commutation relations
From the rules above, we can build more complicated operations. For example, we can
consider the action of both a time-reversal and reflection. We could first act by the
time-reversal and then by the reflection:

Z 7→ X(r)X(t)−tZ , (2.55)

or we could do it the other way around:

Z 7→ X(t)X(r)Z . (2.56)

As these operations are symmetry operations, we know from the fundamental theorem 1.1
that

X(r)X(t) = eiθX(t)X(r) . (2.57)

After absorbing the phase eiθ/2 in either X(r) or X(t), we obtain the relation

X(t)X(r) = X(r)X(t) . (2.58)

So, the representations of time-reversals and reflections commute. By a similar reasoning,
we can show that for time-reversals (and reflections), the following equality is satisfied for
all on-site symmetry operations g:

X(t, r)X(g) = eiθ(g)X(g)X(t, r) . (2.59)

Hence, we see that the representations of on-site symmetries commute in a projective way,
i.e. up to a phase, with the representations of time-reversals and reflections. Consider the
gauge map Υ defined in Eq. (2.41). If we act with an on-site symmetry g and a time-
reversal t (the same relation can be obtained for reflections), we obtain:

Υgt(Z) = eiω(g,t)ΥgX(t)Z
= eiω(g,t)X(g)X(t)Z
= eiω(g,t)−iθ(g)X(t)X(g)Z
= eiω(g,t)−iθ(g)−iω(t,g)Υtg(Z) , (2.60)

where we used Eq. (2.59) in the third line. Now, because on-site symmetries and time-
reversals are supposed to commute, Υgt and Υtg are equal and, thus, we obtain an ex-
pression for the projective commutation phase eiθ(g) in terms of the 2-cocycles:

θ(g) = ω(g, t) − ω(t, g) . (2.61)

Now, we can check that this implies that θ(g) forms a 1D representation up to a square
in the 2-cocycles (cf. [14]):

θ(gh) = ω(gh, t) − ω(t, gh)
= ω(h, t) + ω(g, ht) − ω(g, h) − ω(g, h) − ω(tg, h) − ω(t, g)
= ω(h, t) + ω(g, ht) − 2ω(g, h) − ω(gt, h) − ω(t, g)
= ω(h, t) + ω(g, ht) − 2ω(g, h) −

(
ω(t, h) + ω(g, th) − ω(g, t)

)
− ω(t, g)

= ω(h, t) + ω(g, ht) − 2ω(g, h) − ω(t, h) − ω(g, ht) + ω(g, t) − ω(t, g)
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= ω(h, t) − 2ω(g, h) − ω(t, h) + ω(g, t) − ω(t, g)
= θ(g) + θ(h) − 2ω(g, h) , (2.62)

where we used the direct product structure of the total symmetry group in lines 3 and 5.

2.6 Explicit construction
In the following sections, we try to construct a system (and associated MPS tensor) invari-
ant under a symmetry group G (possibly containing time-reversals or reflections) given
an SPT phase classified by a 1-cocycle φ ∈ H1

β(G; U(1)) and 2-cocycle ω ∈ H2
α(G; U(1)).

We will by no means try to give a physical interpretation of the obtained MPS. We only
show that it is, in theory, possible to construct a system (described by an MPS) that
belongs to the given SPT phase.

We will use a different notation in the remainder of this chapter to reduce the number
of parentheses. The gauge matrices will be denoted by V g where g ∈ G is the symmetry
element. As before, we know that requiring symmetry of an MPS matrix Ai is equivalent
to stating the following two conditions (injectivity and projectivity constraints):

V g
∑
j

u(g)ijAj = eiφ(g)AiV g , (2.63)

V gV h = eiω(g,h)V gh . (2.64)

To find a representative of the SPT phase fixed by φ and ω, we are inspired by the
associated cocycle conditions and we will explicitly use them during the construction.

2.6.1 On-site
For on-site symmetries, we will show that the following ansatz satisfies the required con-
ditions:

(V g)a,b =
eiω(a,g) b = ag

0 otherwise
(2.65)

(Ah,m)a,b =
eiω(h,a)+iφ(m) b = ha

0 otherwise
(2.66)

We choose the physical action Û(g) to map Ah,m to Ah,mg. From this construction, it
is immediately clear that the dimensions of the physical and virtual spaces are given by
respectively |G|2 and |G|.

Proof of soundness.

(V g)a,ag(V h)ag,agh = eiω(a,g)+iω(ag,h)

eiω(g,h)(V gh)a,agh = eiω(g,h)+iω(a,gh)

By the 2-cocycle condition for ω, the two expressions are equal and so the projectivity
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condition (2.64) is satisfied. In the same way, we obtain:

(V g)a,ag(Ah,mg)ag,hag = e
iω(a,g)+

[
iω(h,ag)+iφ(mg)

]
eiφ(g)(Ah,m)a,ha(V g)ha,hag = e

iφ(g)+
[
iω(h,a)+iφ(m)

]
+iω(ha,g)

.

By the 1- and 2-cocycle conditions for φ and ω, the two lines are equal and so the
injectivity condition (2.63) is satisfied.

2.6.2 Time-reversal
For symmetry groups with time-reversal included, we have to modify the above construc-
tion, because the cocycle conditions contain a nontrivial action. The function ω is now
an element of H2

α(G; U(1)), where α(g) = −1 if and only if g contains a time-reversal
operation. The same holds for φ ∈ H1

β(G; U(1)) with α replaced by β.

The direct modifications of the ansatz in previous section are:

(V g)a,b =
eiα(a)ω(a,g) b = ag

0 otherwise
(2.67)

(Ah,m)a,b =
eiα(ha)ω(h,a)+iβ(m)φ(m) b = ha

0 otherwise
(2.68)

with the physical action Û(g) again mapping Ah,m to Ah,mg.
Proof of soundness.

(V g)a,ag(V h)ag,agh
g = eiα(a)ω(a,g)+iα(g)α(ag)ω(ag,h)

eiω(g,h)(V gh)a,agh = eiω(g,h)+α(a)iω(a,gh) ,

where, in the first line, the bar with subscript g indicates the fact that we only take
the complex conjugate if g contains a time-reversal operation (similar to the operator
Ĉg in previous sections). This parametrized complex conjugation is the reason for the
appearance of an extra factor α(g) in the exponent on the right-hand side. Because α is
a G-action, we can simplify the product α(g)α(ag) as α(a).

To apply the 2-cocycle condition (with nontrivial action α) for ω, we should normally
have the factor α(a) in the term iω(g, h). However, this factor does not appear in that
term, but it does in all other terms. Because α takes its values in Z2, we can just multiply
all terms in the exponents by α(a) to fix this, since changing the sign of all terms in an
equation does not change its validity. We see that the two lines are equal and, hence,
condition (2.64) is satisfied.

In the same way, we obtain:

(V g)a,ag(Ah,mg)ag,hag
g = e

iα(a)ω(a,g)+β(g)
[
iα(hag)ω(h,ag)+iβ(mg)φ(mg)

]
eiφ(g)(Ah,m)a,ha(V g)ha,hag = e

iφ(g)+
[
iα(ha)ω(h,a)+iβ(m)φ(m)

]
+iα(ha)ω(ha,g)
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By the same reasoning as above and by noting that for time-reversals α = β, we see that
the two lines are equal and condition (2.63) is satisfied.

2.6.3 Reflection
For symmetry groups with reflection symmetry included, we have to modify the above
constructions even more. The function ω is still an element of H2

α(G; U(1)), where α(g) =
−1 if and only if g contains a reflection, but now, the function φ is again an element of
the first cohomology group with trivial action.

The modifications of the ansatz found in previous section are:

(V g)a,b =
eiα(a)ω(a,g) b = ag

0 otherwise
(2.69)

(Ah,m)a,b =
eiα(ha)ω(h,a)+iφ(m) b = ha

0 otherwise
(2.70)

with the physical action Û(g) mapping Ah,m to Ah−1,mg if g contains a time-reversal (this
odd-looking feature will be explained below) and mapping Ah,m to Ah,mg if it does not
(as before).

Proof of soundness. To ease the notation, we will only consider the case where g contains
a reflection (the other case is trivial and belongs to the first section).

(V g)a,ag(V h)ag,agh = eiα(a)ω(a,g)+iα(g)α(ag)ω(ag,h)

eiω(g,h)(V gh)a,agh = eiω(g,h)+α(a)iω(a,gh)

The reason why we used complex conjugation in the first line instead of a transpose inverse
is that we can assume the gauge matrices of on-site symmetries to be unitary as shown in
Section 2.1.1. Then, by the exact same reasoning as in the previous section, we see that
Eq. (2.64) is satisfied.

In the same way, we obtain:

(V g)a,ag(Ah
−1,mg)tag,hag = e

iα(a)ω(a,g)+
[
iα(ag)ω(h−1,hag)+iφ(mg)

]

eiφ(g)(Ah,m)a,ha(V g)ha,hag = e
iφ(g)+

[
iα(ha)ω(h,a)+iφ(m)

]
+iα(ha)ω(ha,g)

The reason for the peculiar physical action is the following. For reflections, we have to
take the transpose of the MPS matrices and, by definition of a transpose, Bt

i,j = Bj,i. For
our choice of MPS matrices this becomes:

(Ah,m)ta,b = (Ah,m)b,a =
eiα(hb)ω(h,b)+iφ(m) a = hb ,

0 otherwise .
(2.71)

Now, if the incoming bond carries an index a, the outgoing one will carry the index h−1a.
(This property, that the matrix indices satisfy a one-to-one relationship, follows from the
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fact that left multiplication is a group isomorphism.) It follows that, if we want our
transformed matrix to take an index ag to an index hag, we need the physical action to
replace the matrix Ah,m by Ah−1,m.

To obtain the desired result, we show that ω(h−1, hag) ∼ ω(ha, g). We first write out the
2-cocycle condition:

ω(h−1, hag) − ω(e, ag) + α(h)ω(h, ag) − ω(h−1, h) = 0 , (2.72)

where we used that α(h−1) = α(h), which follows from the fact that the reflection oper-
ation generates a Z2 subgroup of the total symmetry group. It is exactly the third term
that we need so we still have to show that both the second and the last term vanish. This
can be derived from the general structure of H2

α(G; U(1)).

• As shown in Section A.2.1 in the appendix, we can always normalize the cocycles:

ω(e, g) = ω(g, e) = 0

for all g ∈ G.

• From the 2-cocycle condition we obtain:

α(x)ω(x−1, x) − ω(xx−1, x) + ω(x, x−1x) − ω(x, x−1) = 0 .

The second and third term vanish due to the statement above and so we get:

ω(x, x−1) = α(x)ω(x−1, x) . (2.73)

We now use this equality and the remaining ‘gauge freedom’ to set these values to
0. By adding a coboundary κ, we perform the transformation

ω(x, x−1) → ω(x, x−1) + κ(e) − α(x)κ(x−1) − κ(x) .

We make the following choice:

κ(x) = ω(x, x−1)
2 . (2.74)

This transformation leaves the choice ω(e, e) = 0 unchanged, so the second term
vanishes. The third and last term are equal because of Eq. (2.73) above and together
give a contribution −ω(x, x−1), which cancels the first term. We thus obtain the
desired transformation ω(x, x−1) → 0.

After making these ‘gauge transformations’, Eq. (2.72) gives:

ω(h−1, hag) = −α(h)ω(h, ag) . (2.75)

Inserting this in the MPS transformation equations leads to:

(V g)a,ag(Ah
−1,mg)tag,hag = e

iα(a)ω(a,g)+
[

−iα(hag)ω(h,ag)+iφ(mg)
]
,

eiφ(g)(Ah,m)a,ha(V g)ha,hag = e
iφ(g)+

[
iα(ha)ω(h,a)+iφ(m)

]
+iα(ha)ω(ha,g)

.

Because we looked at the situation where g contains a reflection, we know that α(g) = −1
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and, hence, the term −iα(hag)ω(h, ag) in the exponent on the first line can be rewritten
as α(ha)ω(h, ag). From here, we have to apply the same reasoning as in previous section
to complete the proof that Eq. (2.63) is satisfied.

2.6.4 Everything together
The results obtained in the previous section can be combined almost verbatim to construct
symmetric MPS ansätze for more general symmetry groups.

2.7 Numerical results
Here, we list some results obtained from numerical computations for on-site symmetries,
on-site symmetries combined with a time-reversal symmmetry and on-site symmetries
combined with both time-reversal and reflection symmetry. To obtain these results, we
used the Smith normal form to efficiently solve the cocycle conditions. We do not ex-
plain how this algorithm works at this point. For the sake of continuity, we defer this
explanation until the next chapter.

For systems that are not translation-invariant, different choices of 1-cocycles do not lead
to distinct phases [13] and, hence, the columns |H1(G; U(1))| can be ignored in this case.

For on-site symmetries (with translation invariance):

G |H1| |H2|
{e} 1 1
Z2 2 1
Z3 3 1
Z8 8 1

Z2 × Z3 6 1
Z4 × Z6 2 × 12 2
D2 22 2
D3 2 1
D4 22 2

In these tables, the case G = {e} means that the on-site symmetry group is trivial.

For combined on-site and time-reversal symmetries (with translation invariance):

G |H1| |H2|
{e} 1 2
Z2 2 22

Z3 1 2
Z8 2 22

Z2 × Z3 2 22

Z4 × Z6 22 /
D2 22 24

D3 2 22

D4 22 24
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For combined on-site, time-reversal and reflection symmetries (with translation invari-
ance):

G |H1| |H2|
{e} 2 22

Z2 22 24

Z3 2 22

Z8 22 /
Z2 × Z3 22 24

Z4 × Z6 / /
D2 23 27

D3 22 24

D4 23 /

Remark: Entries with a slash ’/’ indicate that the computation time exceeded reasonable
bounds. However, it should be noted that the algorithm was not fine-tuned for an optimal
execution time and that the calculation was run on a small laptop. So, this result is not
very representative. On the other hand, it is well-known that the calculation of the Smith
normal form is an expensive task and so it could be useful to run the calculations using
a more specialized algorithm [35, 30].

Comparing these results with the ones listed in [14, 11] shows that the systematic classi-
fication based on the first and second cohomology groups is consistent with the literature
and, hence, provides a viable numerical tool for the classification of SPT phases. If we
compare the cohomology that we compute (our symmetry group explicitly includes time-
reversal and/or reflection symmetries) with the results in [14], we see that we obtain the
following systematic way of classifying SPT phases:

Separate classification of the parity of
the system under a reflection and 1D
representations of the on-site symme-
try group. ww�
Single calculation of 1-cocycles of the
total symmetry group (with nontrivial
action).

Separate classification of reflection and
time-reversal parity of the boundary
spin, projective representations of the
on-site symmetry group and projective
commutation relations.ww�
Single calculation of 2-cocycles of the
total symmetry group (with nontrivial
action).

The first conclusion is completely consistent with the result obtained in Section 2.5 above.
By including time-reversal and reflection symmetries in the total symmetry group, we can
consider the 1D phase representation of the on-site symmetry group and the reflection
parity of the system as one and the same thing. The second conclusion is also not totally
surprising. By using the fact that the total symmetry group is a direct product (by
assumption) and the projective behaviour of the gauge matrices, we have determined in
Section 2.5.1 that the representation of the total symmetry group satisfies a (projective)
commutation relation and we have expressed this in terms of the 2-cocycles. This way, the
projective commutation relations are automatically classified if the 2-cocyles are found.
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However, the algorithm not only gives the structure of the cohomology groups, it also gives
explicit solutions for the cocycles and coboundaries. This is very useful in combination
with the explicit MPS construction from the previous section. So, given a symmetry
group, we cannot only numerically find all possible SPT phase, we can also construct, for
a given SPT phase, a representative MPS in one go.



Chapter 3

Introducing space groups

In a homogeneous Euclidean space, we can perform any rotation, translation or reflection
and obtain the same Euclidean space again. Now, consider a lattice in this Euclidean
space, i.e. a discrete subgroup of Rn isomorphic to Zn that spans the Euclidean space. If
we require that the allowed transformations leave the lattice unchanged, it is immediately
obvious that not all transformations are allowed anymore. For example, if the lattice
spacing is λ, then a translation over λ/3 will not leave the lattice unchanged. This leads
to the classification of space group symmetries, i.e. groups which a certain kind of ordered
lattice invariant.

In general, there are multiple facets to this classification. First of all, we should classify
the so-called point groups. These are the symmetry groups that leave a certain point
(generally the origin) fixed. So, translations will never be a part of the point group.
The point groups are the symmetry groups of the unit cell. If we consider a regular
lattice, not all point groups are admissable anymore as they should leave the complete
lattice invariant. So, the number of relevant point groups when working with a lattice
is generally reduced after this additional restriction. On the other hand, we should also
classify the Bravais lattices which give the ordering of the lattice. A Bravais lattice is
defined as a lattice in Euclidean space that is compatible with one of the (reduced) point
groups found before. The combination of point groups and Bravais lattices gives the space
groups. For example, in 3 dimensions there are 7 point groups and 14 Bravais lattices.
However, there are 230 distinct space groups, which is clearly more than 7 × 14 = 98.
This follows from the fact that there exist so-called glide reflections and screw axes, which
are combinations of reflections, rotations and translations.

3.1 One-dimensional classification
As mentioned above, it is well known that there exist 230 different space groups for three-
dimensional lattices. In 1 dimension1, this number is greatly reduced (for example, there
clearly exists only one Bravais lattice) and only 7 symmetry groups remain. These are
the so-called frieze groups. Formally, they are defined as follows:

Definition 3.1. Consider the strip S = R × I, where I is a finite interval, and denote
1For a truly one-dimensional system, only 3 possibilities arise (see [42]).

31



Chapter 3. Introducing space groups 32

its group of isometries by Isom(S). The discrete subgroups of Isom(S) that contain a
translation generator are called the frieze groups.

The 7 frieze groups are generated by 5 different elements:

1. T: translation (by a unit cell)

2. H: reflection across y-axis

3. V: reflection across x-axis

4. G: glide reflection (translation by half a cell followed by V)

5. R: rotation over 180° (this generator is equal to the product HV )

Using these elements, we can construct (see e.g. [53]) the discrete subgroups of Isom(S).

Theorem 3.1 (Classification of frieze groups). Up to conjugation, the following 7
groups are the only discrete isometry (sub)groups of the one-dimensional strip:

1. F0 = ⟨T | ∅⟩,

2. FV = ⟨T, V | V 2 = e, V −1TV = T ⟩,

3. FH = ⟨T,H | H2 = e,H−1TH = T−1⟩,

4. FG = ⟨T,G | G2 = T,G−1TG = T ⟩,

5. FR = ⟨T,R | R2 = e, R−1TR = T−1⟩,

6. FV H = ⟨T,R,H | R2 = H2 = (HR)2 = e, R−1TR = T−1, H−1TH = T ⟩, and

7. FRG = ⟨T,R,G | R2 = (RG)2 = e,G2 = T,R−1TR = T−1, G−1TG = T ⟩.

Here, we used the presentation notation defined in the appendix (see Definition A.5). As
this is a rather abstract way of defining these groups, we have given a graphical example
of each of the frieze groups in Fig. 3.1. In architecture, these decorations are often called
friezes (what’s in a name).

From a mathematical point of view, this classification can also be carried out similar to the
way we classified SPT phases in the previous chapter. The systematic approach is again
based on the framework of group cohomology (see Section A.2 in the appendix) and gives
a classification [26, 42] in terms of H1(G0,U(1)) ∼= H2(G0,Z). Here, G0 = G/T is the
point group obtained by quotienting out the translations from the total symmetry group.
The isomorphism is the result of the long exact sequence in cohomology as explained in
the appendix (see Eq. (A.37)).

Intuitively, we could, however, expect a different outcome. For example, all operations
can be constructed using vertical reflections, horizontal reflections and glide reflections,
all of which have order 2 (up to translation). Hence, we could expect that the frieze
groups are given by the subgroups of Z2 × Z2 × Z2. However, there are 16 (and not 7) of
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FRG

FV H

FR

FG

FH

FV

F0

Figure 3.1: Friezes

these subgroups and this is exactly where the part ’up to conjugation’ in the classifying
theorem 3.1 becomes important.

As an example, we will consider the frieze in Fig. 3.2. At first sight, this figure seems
to have a symmetry group not listed above. However, according to the frieze group
classification, this coincides with the case of FR!

Figure 3.2: Another one?

Proof. A general planar isometry can be parametrized as Ax⃗+ω⃗ where A ∈ O(2), i.e. they
are elements of the Euclidean group (a subgroup of the affine group). Because we look at
the isometries of a strip, which has an upper and lower boundary, the translation vector ω⃗

cannot have a vertical component and is, hence, of the form
(
x1
0

)
. For the same reason,
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the matrix A is of the form
(

±1 0
0 ±1

)
. The group multiplication is defined as follows:

(
A1, ω⃗1

)(
A2, ω⃗2

)
=
(
A1A2, A1ω⃗2 + ω⃗1

)
(3.1)

Both the symmetry group of Fig. 3.2 and the symmetry group FR have 2 elements. The
nontrivial element of these groups is, respectively, given by2:(

−1,
(

1
2
0

))
(−1, 0) . (3.2)

Both are easily checked to be of order 2 (when modding out by Z in the second argument)
as required. If these groups are to be equal up to conjugation, there should exist an element
(A, ω⃗) in Isom(S) such that

(
A, ω⃗

)(
−1,

(
1
2
0

))
=
(
−1, 0

)(
A, ω⃗

)
. (3.3)

This can also be rewritten by working out the group multiplication:(
−A,A

(
1
2
0

)
+ ω⃗

)
=
(
−A,−ω⃗

)
. (3.4)

It follows that, for any matrix A, we should be able to find a vector ω⃗ satisfying the
condition. For simplicity’s sake, we will choose A to be the identity. Inserting this in
the condition on ω⃗, we obtain 1

2 + ω1 = −ω1 or, equivalently, ω1 = −1
4 . Hence, the two

symmetry groups are related by a shift over a quarter of a unit cell.

To make this visually clear, we will redraw Fig. 3.2 with an extra line indicating the
position of the axis of reflection:

If we reflect about the dashed line instead of the site-centered axis, we indeed see that
the symmetry group is isomorphic to FR.

3.1.1 On a lattice
Now, we have to ask ourselves the question what we really want. Consider for example
a system on a one-dimensional chain as in the previous section. The FR case would
correspond to a translation-invariant chain with the additionial property that the particles
at every site have some kind of rotational symmetry. The case depicted in Fig. 3.2,
however, would correspond to a chain with sites alternating between two types A,B with
the additional property that the A and B sites are related through a rotation. But this
does not at all mean that the A and B sites are equal.

2We work in the convention where the distance between two consecutive upward pointing legs is 1.



Chapter 3. Introducing space groups 35

The reason for this discrepancy is that in the above classification, every site contains
exactly the same information. The upward and downward pointing legs in Fig. 3.2 are
the same (except for their orientation). And indeed, blocking the two-site unit cell to a
one-site unit cell and requiring some kind of symmetry is equivalent to starting with a
one-site unit cell with that same symmetry. But we do not want the tensor networks to
be exactly the same under a lattice transformation, we only want the resulting physics to
be the same. So the frieze group classification is not exactly what we want.

However, we can easily remediate this problem. A first observation is that we will have to
explicitly specify the periodicity of the lattice or, equivalently, the number of distinct sites
within a single unit cell. This implies that a general transformation can still be written
as an affine transformation Ax⃗+ ω⃗, where A is still of the form(

±1 0
0 ±1

)
, (3.5)

but where ω⃗ is now of the form (
k
0

)
(3.6)

for some k ∈ Zn. The reason for this is that we mod out translations over unit cells. So,
for a unit cell with n distinct sites, a translation over n sites is equivalent to no translation
at all.

The composition law is still given by Eq. (3.1) and, hence, the closure property of the
group implies that

Ag1ω⃗g2 + ω⃗g1 = ω⃗g1·g2 (3.7)

for all g1, g2 ∈ G. Because only the first component of ω⃗g is nonzero for all g ∈ G, this
equation can be rewritten as a scalar equation:

β(g1)ωg2 + ωg1 = ωg1·g2 mod n , (3.8)

where β(g) is ±1 depending on the sign of the first element of Ag. This is exactly the
cocycle condition for the first group cohomology H1

β(G;Zn) with nontrivial action β. For
small symmetry groups, this set of N2 × N conditions can be solved by hand, but it
quickly becomes unmanageable.

As an example, we will consider the symmetry group given by an on-site Z3-symmetry on a
periodicity-3 lattice. Because there is no reflection symmetry, the action β : Z3 → {1,−1}
will be trivial, i.e. β ≡ 1. If we label the three elements of Z3 by 1, 2 and 3, we obtain the
following Cayley table:

1 2 3
1 1 2 3
2 2 3 1
3 3 1 2

We can now insert these results in the system of conditions (3.8) (we remove all trivial
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equations and all terms ω1 as these are 0 due to the normalization3):

ω2 + ω3 = 0
ω2 + ω2 = ω3

ω3 + ω3 = ω2 .

Solving this system (over Z3), gives us three solutions:

ω2 = 0, ω3 = 0
ω2 = 1, ω3 = 2
ω2 = 2, ω3 = 1 .

The first one is the trivial solution, where every site is fully symmetric under G = Z3 (the
three different colors emphasize that all three sites in the unit cell are different). The
two nontrivial solutions correspond to situations where the different sites of a unit cell
are related by the Z3 symmetry. All three solutions can easily be visualised (the small
horizontal lines at the tips are added to break reflection symmetry):

(a) Fully symmetric (trivial case).

(b) Left chirality.

(c) Right chirality.

These three configurations are indeed, up to changes in the decoration of the sites which
are irrelevant, the only possible configurations with a Z3-symmetry and lattice periodicity
3.

3.1.2 Smith normal form
To solve the cocycle conditions for larger symmetry groups, we can use a method based
on the Smith normal form of a matrix. The following construction can also be used for
the calculation of the cohomology groups from the previous chapter, even though the
SPT classification was given in terms of coefficients in U(1) instead of Zn. However,
thanks to the theorems of group cohomology, we can use the isomorphism in Eq. (A.37)
to reformulate statements from cohomology with coefficients in U(1) as statements from
cohomology with coefficients in Z. On the other hand, since all coefficients in the cocycle
conditions are ±1 and U(1) ∼= R/Z, we do not even have to use the isomorphism (A.37)
and just work modulo 1 at the end. This way we see that we can use the exact same
algorithm without problem.

3See Section A.2.1 in the appendix.
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Definition 3.2 (Smith normal form). A matrixA over a principal ideal domain4 (PID)
of dimension m×n is said to be in Smith normal form if it can be written in the following
form:

A =
(

diag(a1, a2, . . . , ar) 0
0 0 ,

)
(3.9)

where the coefficients ai satisfy the condition that ai divides ai+1 for all i ≤ r.

Theorem 3.2. Every matrix with coefficients in a PID can be brought to Smith normal
form by invertible matrices U, V .

We will not give a complete proof of this theorem, but we will give a sketch of how a
matrix is brought to Smith normal form (based on the exposition in [34]). We do not
consider the most efficient algorithm, but it is the simplest one to describe since it is a
variation on the Gaussian elimination algorithm.

Sketch of proof. Let us start with an important remark. The rank of the matrix should
not be altered since this is one of the important quantities when computing (co)homology
data. Accordingly, we must ensure that all operations in the algorithm leave the rank
invariant. As in the Guassian elimination algorithm, these are the elementary row/column
operations:

• Type I: Exchanging rows or columns.

• Type II: Multiplying a row or column by a nonzero number.

• Type III: Adding a multiple of a row/column to another row/column.

The algorithm proceeds iteratively. The procedure at every iteration goes as follows:

1. We look for the smallest entry (in absolute value) and, by type-I moves, bring it to
the upper left corner of the matrix. This entry will be called the pivot.

2. By type-III moves, we try to set all entries below and to the right of the pivot to 0.
If this is not possible, we reduce the magnitude of the entries below and to the right
of the pivot and start anew (potentially changing the pivot) until the zero entries
are obtained.

3. Then, we check if the pivot divides all other entries. If so, we can proceed. If not, we
use type-III moves to make the first entry that is not divisible by the pivot divisible
and start anew until all entries are divisible by the pivot.

4. After satisfying the divisibility condition, we check if the pivot is negative. If not,
we use a type-II move (with factor −1) to make it positive.

The next iteration proceeds by working in the submatrix obtained by removing the first
row and column.

Using this theorem and the underlying construction (see [18, 34]), we can find a numerical
4The exact definition is not important. Relevant examples are any field or the ring of integers Z.
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way to solve the system of cocycle conditions

Aω⃗ = 0 .

We will explain the construction in the case of the classifcation of (generalized) space
groups. Because, in this case, the matrix A associated to the system of cocycle conditions
is technically not a matrix over a principal ideal domain5 but over some cyclic group Zn,
we will have to use some modified methods. Generally, we can still work with matrices
over the integers and use the Smith normal form, with the exception that we mod out by
the order n in the end (or even during intermediate steps if we are careful). This way, we
still obtain a decomposition UDV over the integers with D in Smith normal form.

Because Aω⃗ = 0 and U is invertible, we have DV ω⃗ = 0. All diagonal elements Di that
are 0 correspond to coboundaries and, hence, can be discarded. At this point, we should
make a distinction between the different use cases. Depending on the choice of module in
the construction of our cohomology groups, we can discard even more diagonal elements.
For example, we know that in the current case we are working over some cyclic group
Zn and, hence, (at the end) we will mod out by n. So, diagonal elements Di that are
multiples of n can already be discarded in this step. Now, let I denote the set of row or
column indices corresponding to the diagonal elements that were not discarded. To find
the corresponding ω⃗, we will use the linearity of the cocycle conditions. To this intent,
we select an index i ∈ I and set (V ω)j = δij(n/Di). Multiplying this equation by the
inverse matrix V −1 gives ωk = V −1

ki (n/Di) and, so, the nontrivial cocycles ω⃗ are given by
the (scaled) columns V −1

li (n/Di) for all i ∈ I.

Every step in the algorithm is linear as we already noted and, hence, a linear combination
of solutions is also a solution. For example, consider an internal Z3-symmetry on a
periodicity-3 lattice as above. If the algorithm gives us the solution ω⃗ = (0 1 2), we can
find another cocycle, namely 2ω⃗ = (0 2 1), which is exactly the solution corresponding to
the other chirality.

3.2 Frieze groups
In this section, we will consider (some) symmetry groups corresponding to the friezes in
Fig. 3.1. Our basic tool will be the fundamental theorem 1.1. Using this theorem, we will
derive the classification of SPT phases and, for each phase, we will give a generic MPS
representation.

3.2.1 F0-group
This is the symmetry group of a translation-invariant system. This system does not have
any symmetries aside from the translation invariance and, hence, does not admit nontrivial
SPT phases. Because translation invariance will be an important property for all systems
under consideration, we will first show that every TI system admits a description by a
uniform MPS, i.e. an MPS for which A[n] ≡ A for every site index n.

Assume that we start with a general MPS described by tensors {A[n]}n∈Λ, where Λ
5A general property of PIDs is that there are no nontrivial zero divisors, i.e. for every element a, the

equality ab = 0 implies that b = 0. However, for cyclic groups it is obvious that this property fails.
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denotes the one-dimensional lattice on which we work. For notational simplicity, we will
henceforth write An instead of A[n]. When requiring translation invariance, Theorem 1.1
implies the following condition for all site indices i ∈ Λ:

Aki+1 = eiφiX−1
i AkiXi+1 . (3.10)

This relation can now be inserted in the general MPS formula to express all MPS tensors
relative to a given site index i1 ∈ Λ. The MPS tensors associated to sites to the left of i1
can be rewritten in a similar way by solving Eq. (3.10) for Aki and replacing i by i − 1.
Graphically, this then gives us:

Ai1 Ai2 Ai3

= Ai1 eiφi1 X−1
i1

Ai1Xi2 eiφi2 X−1
i2

Ai2Xi3

= Ai1 eiφi1 X−1
i1

Ai1Xi2 ei(φi1 +φi2 )X−1
i2

X−1
i1

Ai1Xi2Xi3

= Ai1 eiφi1 X−1
i1

Ai1 ei(φi1 +φi2 )X−1
i1

Ai1 ei(φi1 +φi2 +φi3 )X−1
i1

Ai1

It is impossible to remove all the phase factors, but because every quantum state is defined
up to an arbitrary phase, we can simply ignore this global phase. Hence, by a redefinition
X−1
i1 Ai1 −→ Ai1 , we can always choose a uniform MPS discription for a TI system:

|ψ⟩TI =
∑
{si}

tr
(
N∏
i=1

Asi

)
|s1s2 · · · sN⟩ , (3.11)

where the tensors Ai are now site-independent.

3.2.2 SWAP: FV -group
In this case, the state is not only translation-invariant, but it is also invariant under a
reflection about the horizontal axis (a ‘swap’). As in the previous case, we will start from
an MPS with the same tensor C at every site but with the generalization that the tensor
has two physical indices: C ≡ Cij (see Fig. 3.4).

C CC C

i

j

Figure 3.4: Two-legged MPS.

Invariance under the swap-operation implies that

Cji = eiφX−1CijX . (3.12)
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Applying this operation a second time gives:

Cij = e2iφX−2CijX2 . (3.13)

From Theorem 1.1, we can conclude that φ ∈ {0, π} and that

X2 = eiχ1 . (3.14)

No further restrictions on the constant χ arise and we can absorb this phase in X. It
follows that the gauge matrices in the case of a swap-symmetry are involutory. However, it
is not very difficult to check that the analysis in Section 2.1.1 generalizes to this case and,
hence, that X can be assumed to be unitary. Combining this with the above condition,
we obtain that X is also Hermitian, i.e. X† = X. Now, we will prove that matrices that
are both unitary and Hermitian are unitarily equivalent to matrices of the form

Z =
(
1m 0
0 −1n

)
. (3.15)

Proof. Since unitary/Hermitian matrices are unitarily diagonalizable we obtain a decom-
position of the form

X = UDU †

with D diagonal and U unitary. Because X is unitary we immediately find that D−1 = D†

or equivalently that the diagonal elements of D lie on the complex unit circle: Di = 1
Di

.
On the other hand we can immediately see that because X is Hermitian all eigenvalues
are real. So the diagonal elements should be both real and and lie on the complex unit
circle. The only numbers that satisfy these conditions are ±1 and this completes the
proof.

Inserting this into the symmetry condition gives us:

Cji = ±(UZU †)Cij(UZU †) , (3.16)

where we used that Z = Z−1. This equation can also be rewritten as:

U †CjiU = ±Z(U †CijU)Z . (3.17)

After the redefinition U †CijU −→ Dij, we obtain:

Dji = ±ZDijZ . (3.18)

So, up to a conjugation by a matrix of the form (3.15), we obtain (anti)symmetric MPS
tensors with respect to the swap-operation. This also implies that in the case of swap-
symmetry the number of degrees of freedom in the variational ansatz are greatly reduced.
Up to the signature6 of Z the matrices Dij completely determine the ‘swapped’ matrices
Dji.

6The number of 1’s and -1’s on the diagonal.
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3.2.3 Reflections: FH-group
In this case the system is invariant under reflections across a vertical axis. In the MPS
formalism this operation is implemented by taking the transpose of all matrices. This can
be proven as follows:

|ψ⟩ =
∑
{si}

tr
(
As1As2As3 . . . AsN

)
|s1s2 . . . sN⟩

R|ψ⟩ =
∑
{si}

tr
(
As1As2As3 . . . AsN

)
|sN . . . s2s1⟩

(3.19)

Using the invariance of the trace under taking transposes we can rewrite the second
equation as:

R|ψ⟩ =
∑
{si}

tr
(
(AsN )t . . . (As2)t(As1)t

)
|sN . . . s2s1⟩ (3.20)

Relabeling all indices (sk −→ sN−k+1) gives us what we wanted:

R|ψ⟩ =
∑
{si}

tr
(
(As1)t(As2)t . . . (AsN )t

)
|s1s2 . . . sN⟩ (3.21)

We can now consider a system symmetric under reflections. Requiring invariance of the
MPS under a reflection R gives us the following condition:∑

j

Rij(Aj)t = eiφX−1AiX , (3.22)

where R is aunitary matrix satisfying R2 = 1. Applying a second reflection, gives:

Ai = e2iφX tX−1AiXX−t

= e2iφ(XX−t)−1AiXX−t . (3.23)

Using the injectivity of Ai to apply Theorem 1.1 gives us two conditions:

• φ ∈ {0, π}, and

• XX−t = eiχ1 .

The second condition can be rewritten as follows:

X = eiχX t . (3.24)

This equation gives rise to two possibilities:

• tr(X) ̸= 0: Because tr(X) = tr(X t), we obtain that χ = 0 and, hence, that X is
symmetric.

• tr(X) = 0: Here, we cannot use an argument based on the trace. However, iterating
Eq. (3.24) shows that the phase factor squares to 1 or, equivalently, that χ ∈ {0, π}.
This tells us that X is symmetric or skew-symmetric7.

7For odd bond dimensions, only the symmetric case is possible since skew-symmetric matrices are not
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Due to the discrete character of the indicators φ and χ, we get 3 nontrivial SPT phases,
i.e. we obtain a Z2 ×Z2 classification. This is completely consistent with numerical results
from the Smith normal form algorithm and with the literature [14].

A reflection symmetric MPS can also be brought to a kind of normal form. First, we will
consider the symmetric case X = X t. Using the Autonne–Takagi factorization (see Sec-
tion B.2 in the appendix), we can write every complex symmetric matrix in the following
form:

X = UU t (3.25)

for some complex matrix U . Inserting this expression in condition (3.22) gives:∑
j

Rij(Aj)t = ± U−tU−1AiUU t

⇐⇒
∑
j

RijU
t(Aj)tU−t = ± U−1AiU

⇐⇒
∑
j

Rij

(
U−1AjU

)t
= ± U−1AiU .

Starting from a uniform MPS with tensor A, inserting the unit matrix 1 = UU−1 between
all sites and defining C ≡ U−1AU , we see that we can obtain a manifestly (anti)symmetric
MPS with respect to reflections.

For the skew-symmetric case (X = −X t), we can use a similar trick. Every complex skew-
symmetric matrix can be written in the following way (see Section B.3 in the appendix):

X = U(1n ⊗ iσy)U t , (3.26)

where U is some complex matrix and σy is the Pauli y-matrix:

σy :=
(

0 −i
i 0

)
. (3.27)

From here on, we will denote the matrix 1n ⊗ iσy by Γ to ease the notation. We can now
perform a similar calculation as before to obtain the equation

−
∑
j

Rij(U−1AjUΓ)t = ±U−1AiUΓ (3.28)

in which we used that Γt = −Γ = Γ−1. This could also be written more symmetrically by
introducing the square root

√
Γ:

−
∑
j

Rij(
√

ΓU−1AjU
√

Γ)t = ±
√

ΓU−1AiU
√

Γ . (3.29)

We can again get MPS tensors that are reflection-(anti)symmetric as before, but there
is a little twist to the story. The new tensors would be obtained by defining C =√

ΓU−1AU
√

Γ:

−
∑
j

Rij(Cj)t = ±Ci . (3.30)

invertible in odd dimensions.
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However, for this to work we should, instead of inserting the identity in the form of
1 = UU−1 between the tensors A, insert the identity in the form of 1 = U

√
Γ(−Γ)

√
ΓU−1

between the tensors (where we used that Γ2 = −1). Although this results in MPS tensors
that are manifestly (anti)symmetric under reflections, we obtain a new feature. Nontrivial
bond tensors Γ arise because only one matrix Γ is used in the definition of the new MPS
tensors C. This nontrivial structure is most easily visualized using the graphical notation:

C C CΓt Γt

The presence of these matrices Γ is very similar to the bond tensors that appear in [32]
for symmetric 2D PEPS. They are also used as a means to make the on-site and lattice
symmetries work together in a consistent way. The extra minus sign that appears on the
left-hand side in the transformation formula (3.30) is cancelled by the bond tensors, since
these too give rise to a minus sign under transposition (Γt = −Γ). In general, we see
that, given a physical system that is (anti)symmetric under reflections, we can start from
(anti)symmetric variational ansätze without loss of generality (possibly with the inclusion
of the bond tensors Γ).

3.2.4 Glide reflections: FG-group
We again consider a system with two-legged MPS tensors, labeled Cij and Dij, but this
time we only require the swap-symmetry up to a shift over one site.

C CD D

i k

j l

Figure 3.5: General system with two distinct two-legged tensors.

The glide reflection symmetry then gives:

Cji = eiθY −1DijX ,

Dji = eiφX−1CijY .
(3.31)

where we chose different gauges on the C-D and D-C bonds. Performing a second glide
reflection gives:

Cij = ei(θ+φ)(XY )−1CijY X ,

Dij = ei(φ+θ)(Y X)−1DijXY .
(3.32)

To find a condition on φ, θ,X and Y , we cannot readily apply Theorem 1.1. However,
by multiplying both equations (blocking two sites), we obtain the correct form for the
fundamental theorem. For the phases, we get the following condition:

2(φ+ θ) = 0 mod 2π =⇒ φ+ θ = 0 mod π . (3.33)

So, within the constraint φ + θ = 0 mod π, we can make an arbitrary choice for one of
the phases. For the gauge matrices X, Y , we obtain:

XY = eiχ1 . (3.34)
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We conclude that the gauges X and Y are (proportional to8) each other’s inverses. How-
ever, if we insert this into the relations above, we obtain:

Cij = ei(φ+θ)Cij

Dij = ei(φ+θ)Dij
(3.35)

with ei(φ+θ) = ±1. If this phase would be −1, both tensors C,D would have to be
identically zero and this is not possible. We conclude that only φ + θ = 0 mod 2π is
physically relevant. After making the choice θ = 0, we can rewrite Eq. (3.31) as follows:

Dji = Y CijY . (3.36)

Inserting this in the MPS in Fig. 3.5 gives:

C CC CY Y Y

i l

j k

By redefining CijY −→ Cij, we obtain the following generic glide reflection-invariant
MPS:

C CC C

i l

j k

We can also conclude that, due to the remark made above, there exists no nontrivial SPT
phase for glide reflection symmetries.

3.2.5 Rotations: FR-group
In this case, the system is invariant under a rotation over π. This is equivalent to the
invariance under the combination of a swap and a reflection. As in the swap and glide-
reflection cases, we use an MPS tensor with two physical indices: C ≡ Cij. Requiring
invariance under FR gives:

(Cji)t = eiφX−1CijX . (3.37)

Applying a second rotation gives:

Cij = e2iφ(XX−t)−1CijXX−t . (3.38)

Using the fundamental theorem 1.1 we get exactly the same conditions as for reflections
(FH-group) and, hence, we obtain a nontrivial SPT classification.
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Figure 3.6: Reflection with a shift.

3.3 Beyond frieze

3.3.1 Reflection with a shift
Let us consider a system that is invariant under a reflection up to a shift over 1 site. If we
denote the MPS tensors at the two different sites by, respectively, A and B, we obtain the
following set of equations for the only nontrivial element in the symmetry group (which
is isomorphic to Z2): ∑

j

Rij(Aj)t = eiφAX−1BiY ,

∑
j

Rij(Bj)t = eiφBY −1AiX ,
(3.39)

where R is a unitary matrix satisfying R2 = 1. Repeating this transformation a second
time gives us:

Ai = ei(φA+φB)Y tY −1AiXX−t ,

Bi = ei(φA+φB)X tX−1BiY Y −t .
(3.40)

Applying theorem 1.1 to the products AiBj and BiAj gives us:

• 2(φA + φB) = 0 mod 2π =⇒ φA + φB ∈ {0, π},

• X tX−1 = eiχX1 =⇒ X t = ±X, and

• Y tY −1 = eiχY 1 =⇒ Y t = ±Y .

By inserting these relations in Eq. (3.40), we obtain9:

φA + φB ± χ
X

± χ
Y

= 0 . (3.41)

Hence, if we have made a choice for φA + φB and either χ
X

or χ
Y

, the other one is fixed.
This again gives us a Z2 × Z2 SPT classification.

We can now proceed by making the general form of this MPS more explicit. First, we
consider the case where both X and Y are symmetric. As in Section 3.2.3, we will use
the Autonne–Takagi factorization for complex symmetric matrices (Section B.2 in the
appendix). This way, we can rewrite the symmetry condition of the MPS tensors as
follows: ∑

j

(RijA
j)t = eiφA(UU t)−1Bi(V V t) , (3.42)

8The proportionality constant can be absorbed in the matrices.
9The ±-sign is, in fact, not relevant since the phases χ are equal to 0 or π and, hence, equivalent to

their negation.
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or equivalently: ∑
j

e−iφAU
[
V −1(RijA

j)U
]t
V −1 = Bi . (3.43)

Now, assume that R = 1 (this is merely for ease of notation, the general case will recovered
at the end). After substituting this in the generic MPS and defining

Ci = e−iφA/2V −1AiU , (3.44)

we obtain the following MPS:

A e−iφ
A
/2UCtV −1 A e−iφ

A
/2UCtV −1 A

= e−iφ
A
/2A U Ct V −1 e−iφ

A
/2A U Ct V −1

= C C t C C t

Now, we consider the case where both X and Y are skew-symmetric. Here, we again use
the factorization for complex skew-symmetric matrices (Section B.3 in the appendix):

X = UΓU t

where

Γ = 1 ⊗ iσy = 1 ⊗
(

0 1
−1 0

)
. (3.45)

By the exact same reasoning as in the symmetric case, we obtain the following MPS:

C Γ Ct Γt C Γ Ct

where we used that (
0 1

−1 0

)−1

=
(

0 −1
1 0

)
= −

(
0 1

−1 0

)
(3.46)

to write Γ −1 as −Γ. By absorbing a factor
√

−1 in every tensor, we can rewrite the MPS
as:

C Γ Ct Γ C Γ Ct

The cases with one symmetric and one skew-symmetric gauge matrix are similar to the
one above, but where the matrices Γ at every second bond are replaced by the identity.
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Before redefining the MPS matrices we assumed that R = 1 which allowed us to forget
about these physical actions and obtain a nice alternating pattern in the MPS. To obtain
the general case where R is nontrivial, we simply have to apply the operator R to the
Ct-sites. Since the physical action R is not a part of the variational ansatz, this does not
increase the number of degrees of freedom. In general, we see that under this symmetry
the information in one MPS tensor completely fixes the other ones.

3.3.2 Time-reversal
Although this case does not contain a nontrivial lattice symmetry, we will include it for
the sake of completeness. We again start from a uniform MPS representation. Invariance
under a time-reversal operation (without a lattice shift) gives the following condition:∑

j

TijAj = eiφX−1AiX , (3.47)

where the unitary matrix T must satisfy TT = 1 as shown in Section 2.2.1 of the previous
chapter. A second time-reversal then gives:

Ai = X−1X−1AiXX . (3.48)

The fact that the phase factor eiφ drops out of the equation and, accordingly, that we
cannot find a constraint on this factor, is consistent with the fact that in condition (3.47)
we can absorb the phase factor in the MPS tensor without loss of generality by the
transformation

eiφ/2Ai −→ Ai . (3.49)

The fundamental theorem 1.1 gives us the following condition on the matrix X:

XX = eiχ1 . (3.50)

As shown in Section 2.1.1, we can assume the matrix X to be unitary. This implies that
X = X−t and, by insertion in the above condition, we get:

X = eiχX t . (3.51)

As in the case of reflection symmetry, this relation tells us that eiχ = ±1 or, equiva-
lently, that X is (skew)symmetric. In representation theory this phase, which is called
the Frobenius–Schur indicator, is very important. It classifies the real irreducible repre-
sentations. Below we will see this classification in action.

We will perform similar calculations as before to bring the time-reversal symmetric MPS
in normal form. First, we consider the symmetric case X = X t. Using the Autonne–
Takagi factorization we obtain an invertible matrix U such that X = UU t. However,
because X is unitary, we have the extra property that U is also unitary. Condition (3.47)
can then be rewritten as follows:∑

j

TijAj = U−tU−1AiUU t

⇐⇒
∑
j

TijU
tAjU−t = U−1AiU
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⇐⇒
∑
j

TijU−1AjU = U−1AiU .

So, by inserting the identity 1 = UU−1 between all sites and defining C ≡ U−1AiU , we
obtain a manifestly time-reversal symmetric MPS tensor, i.e. ∑j TijCj = Ci. So, up to
the mixing by T , we find that the MPS tensors can be chosen to be real. Coincidentally,
the real self-conjugate representations are exactly those for which the Frobenius–Schur
indicator is +1.

For the case X = −X t we can again use the factorization X = UΓU t with Γ = 1⊗iσy and
U unitary. Similar to the case of reflection symmetry, we can try to obtain a manifestly
symmetric form. However, the closest we get is:

∑
j

Tij
√

ΓU−1AjU
√

Γ
t

=
√

Γ
t
U−1AiU

√
Γ . (3.52)

We are not so lucky as in the reflection symmetric case as the matrices
√

Γ and
√

Γt are
located on the wrong side. A more natural form of the above relation is:∑

j

TijU−1AjU = Γ−1U−1AiUΓ . (3.53)

This is also the relation (up to the mixing by T ) that characterizes the so-called self-
conjugate representations of quaternionic type. These are representations ρ for which
there exists a unitary matrix W such that

ρ = W †ρW (3.54)

but that are not real. The best-known example is the Spin(3)-representation given by
the Pauli matrices. These quaternionic representations are exactly the representations for
which the Frobenius–Schur indicator is −1, as is the case here.

3.3.3 Time-reversal with a shift
We will again start from an MPS with two a priori different tensors:

A AB B

i j

Requiring invariance under a time-reversal operation up to a one-site shift gives the fol-
lowing set of equations: ∑

j

TijAj = eiφAX−1BiY ,

∑
j

TijBj = eiφBY −1AiX ,
(3.55)
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where T is a unitary matrix satisfying TT = 1. Repeating this transformation a second
time gives us:

Ai = ei(φB−φA)X−1Y −1AiXY ,

Bi = ei(φA−φB)Y −1X−1BiY X .
(3.56)

Applying the fundamental theorem 1.1 to the products AiBj and BiAj gives usXY = eiχ1
and, as in the case of time-reversal without a shift, the phases φA, φB are unconstrained.
If we want to remove these phases by absorbing them in the MPS tensors as we did in
the previous section, we could, for example, absorb a phase eiφA/2 in both A and B. But
to consistently cancel the phase eiφB in the second symmetry condition, we should have
that φA − φB = 0.

By inserting the relation on the gauge matrices in Eq. (3.56), we obtain the condition:

φB − φA + 2χ = 0 . (3.57)

This relation does not really give us a topological indicator as the phase eiχ can be
consistently absorbed in the gauge matrices, but it agrees with the condition obtained
if we want to consistently absorb the phases φA, φB in the MPS tensors, so everything
matches nicely. For the classification of SPT phases, we see that we only obtain the trivial
phase. However, as before, we can use the symmetry conditions above to find a symmetric
normal form. First, we use our results to rewrite the conditions as follows:∑

j

TijAj = X−1BiY

= X−1BiX−1 . (3.58)

By defining Ci = AiX, we obtain the following MPS representation:

A AA AX X X

T T

= C CC C

T T
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Conclusion and outlook

4.1 Results
We started out with the rather ambitious goal of obtaining a general and numerically
easy-to-implement method to classify SPT phases in 1D bosonic systems in the case of
nontrivial space group symmetries. For all symmetries in one dimension (on-site, time-
reversal, reflection), we obtained a purely cohomological classification by generalizing
the way we look at the projective representations and phase factors obtained from the
fundamental theorem of matrix product states. These results were compared to the
literature [11, 14] using numerical methods and were found to be consistent. We also
gave an interpretation of the group cocycles by generalizing the classification in terms
of projective unitary representations to a classification in terms of projective unitary-
antiunitary representations. An explicit construction of a representative in each SPT
phase was given, but a concrete interpretation in terms of physically realizable systems is
still lacking.

For the inclusion of nontrivial lattice transformations, we argued that the classical space
groups were not sufficient, although the distinction on what are physically distinct systems
is not completely unambiguous. For the relevant spatial symmetry groups, we constructed
a cohomological method which gave plausible results. However, further research on this
topic will be necessary. At the same time, the generalization of the cohomological clas-
sification from fully translation-invariant systems to systems with nontrivial space group
symmetries is also not completely clear. It was expected that the number of SPT phases
(at least in one dimension) would remain the same. However, certain cases such as sys-
tems with a swap or glide reflection symmetry or time-reversal symmetric systems, which
are related by a 1-site shift, showed that this is not true. This difficulty in interpreting
the results could be a consequence of the unclear view on which systems are physically
distinct.

4.2 Outlook
In the future, it should be possible to generalize the methods in a couple of different
ways, even in the case of one-dimensional systems. For example, one could try to include
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continuous on-site symmetries which are described by (compact) Lie groups. A problem
with this generalization is that Lie groups have an infinite number of elements, but for
numerical purposes there should only be a finite number of variables. At the same time,
Lie groups also carry topological information, so one should replace the ordinary group
cohomology by a complex that also takes into account that topological information. Lie
algebra cohomology (e.g. Chevalley–Eilenberg cohomology) could be a possibility. This
is numerically feasible, since the relevant Lie algebras have a finite number of generators
and Lie algebras are inherently linear, although they only contain information about the
group elements connected to the identity (so this might not always suffice). According
to [11], the right choice would be Borel cohomology, based on measurable functions, but
it is not (yet) clear how to compute this numerically. A good understanding of the
various approaches and their relations (for example [52]) will be a good start for further
investigation.

A second possible generalization is the inclusion of fermionic matrix product states. It has
been shown that these are classified by so-called group supercohomology [8, 22, 62]. This
generalization from cohomology to supercohomology arises from the fermionic particle
statistics which induce Z2-graded algebraic structures. The existence of these structures
even gives rise to topological order in the case of symmetries which for bosonic systems
do not admit SPT phases and, hence, it would be interesting to know if their interplay
with space group symmetries gives an even richer phase classification.

Another type of generalization would be to go to higher dimensions (e.g. PEPS). In higher
dimensions, SPT phases are still (partially) classified by group cohomology. However,
because the spatial structure of physical systems in 2 and more dimensions can be more
exotic, the inclusion of space group symmetries will be more intricate. Some cases were
already considered in the literature [32], but this was not done in a systematic way. If
this method could be reformulated in a systematic and easily carried out approach, this
would be a major step forward.

Another aspect that only arises in dimension 2 and higher is the occurence of matrix
product operator (MPO) symmetries [24]. These can be used to describe both intrinsic
topological order and SPT order, but it is still not fully clear what the exact relation
between SPT order and MPO symmetries is and, especially, how the MPO symmetry
algebra relates to the cohomological approach used in this thesis.

Several other directions exist. For example Kapustin et al. [36, 37] reformulated the
framework of SPT phases and tensor networks in the context of topological quantum field
theory (TQFT). It could be interesting to see how the space group symmetries translate
to the geometric language of TQFT. While residing in the world of geometry, it could
also be interesting to study how the presence of symmetries is reflected in the manifold
and fibre bundle structure of MPSs introduced in [23].

A completely different idea would be to include explicit symmetry breaking. In [50], it
was shown that for systems with a degenerate groundstate the symmetries are described
by induced representations. It is still not completely clear how all these concepts relate
to our results and to each other.

Finding a complete and satisfying answer to all of these open research questions is a
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very ambitious task. However, based on the current research and literature, this is not
impossible and studying these problems could lead to important insights in both the
theoretical and numerical nature of tensor networks states.



Appendix A

Algebra

A.1 Group theory

A.1.1 Abstract group theory

Definition A.1 (Order). The order |G| of a finite group G is defined as the number of
elements in the group. The order of an element g ∈ G is defined as the smallest (positive)
integer n such that:

gn = e , (A.1)

where e is the identity element in G. The order of a subgroup H ⊂ G is defined as the
ratio |G|/|H|.

Definition A.2 (Normal subgroup). Let G be a group. A subgroup H ⊂ G is said to
be normal if

gHg−1 = H (A.2)

for all g ∈ G.

Definition A.3 (Direct product). Let G,H be two groups. The underlysing set of the
direct product G×H is defined as the Cartesian product of G and H:

G×H = {(g, h) | g ∈ G, h ∈ H} . (A.3)

The group structure on G×H is defined by pairwise multiplication:

(g1, h1) · (g2, h2) = (g1g2, h1h2) . (A.4)

Definition A.4 (Free group). Consider a set S, which will be called the set of genera-
tors. The free group FS on S is defined as the set of all words on S, i.e. all finite sequences
of elements of S. The multiplication in this group is given by concatenation of words.

Definition A.5 (Presentation). Consider a group G. A presentation of G is a tuple
(S,R), often denoted by ⟨S|R⟩, where:

• S is a set of generators, and
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• R is a set of relations among the generators (generally these are products of elements
which equal the identity)

such that G is isomorphic to the quotient of the free group FS by the set of relations R.
An element of this quotient is also called a reduced word.

A.1.2 Representation theory
Definition A.6 (Representation). A (linear) representation of a group G on a vector
space V is a group morphism ρ : G → GL(V ). This definition is equivalent to stating
that the following equation holds for all g, h ∈ G:

ρ(g)ρ(h) = ρ(gh) . (A.5)

This equation implies the following two important properties:

• ρ(e) = 1V for e the identity in G, and

• ρ(g−1) = ρ(g)−1 for all g ∈ G.

Definition A.7 (Projective representation). A projective representation of a group
G on a vector space V is a group morphism ρ : G → PGL(V ). Here PGL(V ) denotes the
projective linear group, i.e. the quotient group GL(V )/C× of the general linear group by
the invertible complex numbers.

Equivalently (see for example [6]), a projective representation is a function ρ̂ : G → GL(V )
such that the following relation holds for all g, h ∈ G:

ρ̂(g)ρ̂(h) = eiω(g,h)ρ̂(gh) (A.6)

for some function eiω : G×G → U(1).

Definition A.8 (Unitary representation). Let H be a (finite-dimensional) Hilbert
space1. A representation ρ : G → GL(H) is said to be unitary if for every element
g ∈ G, the corresponding operator ρ(g) is a unitary operator.

There is an important theorem stating that every representation of a finite or compact Lie
group G is equivalent to a unitary representation. For finite groups, this is easily proven
by defining a G-invariant inner product obtained by averaging over the group elements.
For Lie groups, the averaging process is not so simple since one cannot simply sum over
all elements. For this one needs an appropriate integration measure. It can be proven
that for compact Lie groups the existence of such a measure, called the Haar measure, is
always guaranteed.

In quantum mechanics, phases are not relevant and, hence, the important structure is
the projectivization of the Hilbert space P(H). The inner product ⟨·|·⟩ on H induces a
mapping on P(H) × P(H) by taking the modulus:

(Ψ,Φ) = | ⟨Ψ|Φ⟩ |
| ⟨Ψ|Ψ⟩ || ⟨Φ|Φ⟩ |

. (A.7)

1The existence of an inner product suffices.
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Although only the unitary operators on H leave the inner product ⟨·|·⟩ invariant, the
product on P(H) is also left invariant by the antiunitary operators, i.e. operators T that
satisfy

⟨TΨ|TΦ⟩ = ⟨Ψ|Φ⟩ = ⟨Φ|Ψ⟩ . (A.8)

This relation, among other things, implies that every antiunitary operator is, in particular,
antilinear2:

T (aΨ + Φ) = a T (Ψ) + T (Φ) . (A.9)

It is also easy to see that the antiunitary operators do not form a group as the product of
two antiunitary opertors is a unitary operator. This property, however, implies that the
union of the set of unitary operators and the set of antiunitary operators can be given the
structure of a group. This group is sometimes called the unitary-antiunitary (UA) group.

Now, by Wigner’s theorem [65], every isometry of ⟨·|·⟩ is induced by either a unitary or
an antiunitary operator. With this in mind, we can define a generalization of unitary
representations.

Definition A.9 (UA representation). Let (G,H) be a pair of groups such that H is
a subgroup of G of order at most 2. A projective unitary-antiunitary representation3 of
G on H is a function ρ : G → UA(H) such that the following conditions are satisfied:

• ρ(g)ρ(h) = eiω(g,h)ρ(gh), and

•
ρ(g) ∈ U(H) g ∈ H ,

ρ(g) ̸∈ U(H) g ∈ G\H .

Similar to the case of projective representations, the first property is equivalent to stating
that ρ is a group morphism from G to the automorphism group of P(H).

This definition is rather general. The ordinary UA-representations are obtained by con-
sidering the case ω ≡ 1. The ordinary unitary representations are obtained by taking
H = G.

For completeness’ sake, we mention an important property that is relevant for this thesis.
Every antilinear operator A can be written as the composition of a linear operator A and
a complex conjugation operator K (with respect to a certain basis) [55]:

A = AK (A.10)

The complex conjugation operator K is defined a follows. Let B = {|ei⟩} be a given basis
for a complex vector space. The complex conjugation operator KB associated to this basis
is defined by the following two properties:

• KB |ei⟩ = |ei⟩, and
2Because of this, these operators do not admit a matrix representation [55].
3Linear-antilinear representations are obtained by replacing (anti)unitary operators by (anti)linear

operators.
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• KB (c |ψ⟩) = c (KB |ψ⟩)

where c is an arbitrary scalar and |ψ⟩ an arbitrary vector. This construction is, in particu-
lar, valid for antiunitary operators where the linear operator A is now a unitary operator.

From its definition, we can conclude that the complex conjugation operator has the fol-
lowing properties:

• KU = UK for every linear map U , and

• K2 = 1.

A.2 Group cohomology
The cocycle condition from Chapter 2 was a very important relation. It implied that the
function ω is a 2-cocycle for the group cohomology of G. But what does this mean?

Definition A.10 (G-module). Consider a group G. A (left) G-module A is as an
Abelian group together with a function λ : G × A → A satisfying the following con-
ditions:

1. λ(e, a) = a,

2. λ(gh, a) = λ(g, λ(h, a)), and

3. λ(g, a+ b) = λ(g, a) + λ(g, b).

These say that λ is a left G-action compatible with the group structure on A, i.e. λ is a
group morphism G → Aut(A).

This definition can also be reformulated in the language of linear algebra. Let ZG be the
group ring of G over Z, i.e. the ring defined by all formal linear combinations of elements
of G (over Z) with the multiplication induced by the multiplications in G and Z. A G-
module as defined above is then equivalent to a ZG-module in the sense of modules over
a ring. This second definition is the preferred way when dealing with tensor products of
group modules.

Now, let us define the cohomology of a group G with respect to a G-module A. Let
Ck(G;A) denote the Abelian group of (set-theoretic) functions f : Gk → A, where the
multiplication is defined pointwise. The elements of this group are called k-cochains. Just
like in the case of singular cohomology in algebraic topology or de Rham cohomology in
differential geometry, we construct the coboundary operators4:

dk : Ck(G;A) → Ck+1(G;A) . (A.11)

Their defining relation is:

dk+1 ◦ dk = 0 . (A.12)
4When the degree can be deduced from the context, one often calls all of these ‘the coboundary

operator’ and one drops the subscript k.
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For group cohomology, the degree-k operator is a group morphism, explicitly defined as
follows5:

dkf(g1, . . . , gk, gk+1) = g1 · f(g2, . . . , gk+1) (A.13)

+
k∑
i=1

(−1)if(g1, . . . , gi−1gi, . . . , gk+1) + (−1)k+1f(g1, . . . , gk) ,

where the symbol · in the first term denotes the action λ of G on A. The kernel of the
coboundary operator is called the group of cocycles, often denoted by Zk

λ(G;A). Below,
we list the cocycle conditions relevant for this thesis:

1. 0-cocycle:

g · κ− κ = 0 , (A.14)

where κ is a constant element in A.

2. 1-cocycle:

g1 · f(g2) − f(g1g2) + f(g1) = 0 (A.15)

3. 2-cocycle:

g1 · f(g2, g3) − f(g1g2, g3) + f(g1, g2g3) − f(g1, g2) = 0 (A.16)

These cocycle conditions are the ones we found in Chapter 2. The action λ for on-site
symmetries was trivial, but if one included symmetries such as time-reversal of reflection
symmetry, then this action became important.

Aside from the k-cocycles, we can also define the group Bk(G;A) of k-coboundaries as the
set of cochains that are obtained by acting with the coboundary operator on a (k − 1)-
cochain:

Bk(G;A) :=
{
ω ∈ Ck(G;A) : ω = dkφ , φ ∈ Ck−1(G;A)

}
. (A.17)

From the property d2 = 0 it follows that Bk is a subgroup of Zk and, hence, we can define
their quotient. This brings us to the definition of the cohomology groups Hk

λ(G;A) of the
group G with coefficients in A and nontrivial action λ:

Hk
λ(G;A) := Zk

λ(G;A)/Bk
λ(H;A) = ker dk

im dk−1
. (A.18)

The fact that we mod out the group Bk
λ(G;A) ≡ im(dk−1) should remind us of the

conditions that we obtained for the function ω in Chapter 2, which followed from the
invariance under phase transformations. Hence, we conclude that the functions ω in the
definition of a projective representation are not merely 2-cocycles, but in fact they are
elements of the cohomology group H2(G; U(1)). This statement is a well-known fact in
group theory: the projective representations of a group G are classified by the elements

5In homological algebra, this construction is generally known as the (normalized) bar resolution
(in inhomogeneous form). See for example [27].
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of the second cohomology group H2(G; U(1)), which in this context is sometimes called
the Schur multiplier. (We come back to this classification in a later section.)

We here state a property (without proof) relevant for our story. For finite groups, it can
be shown that all cohomology groups Hk with k ≥ 1 are torsion and finitely generated,
i.e. they are of the form Zi1 × · · · × Zin for some n ∈ N. Applying this property to the
classification of SPT phases shows that for any finite symmetry group, the number of
distinct SPT phases is also finite.

A.2.1 Normalized complex
The construction of group cohomology above is sometimes called the normalized standard
resolution6 in homological algebra. The reason for this name stems from the property
that every k-cocycle is cohomologous to a normalized cocycle, i.e. for all k ∈ N one can
choose coboundaries such that for all ω ∈ Hk(G;A):

ω(g1, ..., gk) = e (A.19)

if any of the gi is the identity e.

Proof. We will prove the statement for k = 2 as this is the case we will use the most.
First consider the elements g1 = e, g2 = x, g3 = y:

0 = e · ω(x, y) − ω(ex, y) + ω(e, xy) − ω(e, x)
= ω(x, y) − ω(x, y) + ω(e, xy) − ω(e, x)
= ω(e, xy) − ω(e, x) (A.20)

However this is valid for all y ∈ G and hence ω(e, x) is invariant under right translation of
x. Because right translation induces a group isomorphism, every x ∈ G can be obtained
by right translating the identity and hence

ω(e, x) = ω(e, e) (A.21)

for all x ∈ G. A similar reasoning shows that ω(x, e) = ω(e, e) for all x ∈ G.

Now consider a transformation of ω(e, e) under the addition of a coboundary Φ:

ω(e, e) −→ ω(e, e) + Φ(ee) − e · Φ(e) + Φ(e) = ω(e, e) + Φ(e) . (A.22)

By choosing Φ(e) = −ω(e, e) and using the normalization condition (A.21), we obtain:

ω(e, x) = e (A.23)

for all x ∈ G.

This result also corresponds to our intuition. The identity element corresponds physically
to doing nothing and doing nothing twice should not generate a phase, so eiω(e,e) = 1.
Similarly, performing an operation corresponding to the symmetry element g ∈ G first
and then doing nothing should not give an extra phase next to the symmetry operation, so

6Or any other of a vast plethora of names (see also previous footnote).
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eiω(g,e) = 1. (This normalization is of course a consequence of the choice that the identity
element e ∈ G is still represented by the identity matrix.)

We can also show that every normalized coboundary is the coboundary of a normalized
cochain and, hence, the normalization carries over to the quotient, i.e. to cohomology. So,
when working with cohomology, we can always assume that the cochains are normalized.

A.2.2 Applications
Here, we want to give a bit of background on why group cohomology is also relevant
outside the field of topological phases of matter and physics in general. In mathematics,
the cohomology groups are used to find (algebraic) solutions to obstruction or classification
problems in group theory.

As a simple example, we start by the zeroth cohomology group H0
φ(G;A). From Eq. (A.14)

it is clear that these are exactly the fixed points of the action φ. For a trivial action,
for example, this is obviously all of A. This group is generally known as the invariant
subgroup of A (with respect to G), denoted by AG.

A second, more important, example is the second cohomology group. In Chapter 2, it
was shown to be useful in the classification of the projective representations of a finite
group, but in group theory, it can also used to classify all group extensions (the relation
between these two is given later).

Definition A.11 (Group extension). An extension of a group G by an Abelian group
A is defined as a group E such that:

• E/A ∼= G, and

• A is (isomorphic to) a normal subgroup of E.

Now, given a section of the projection map π : E → G, i.e. function s such that π◦s = idG,
there exists an induced action of G on A defined by the following formula [6]:

g · a = ι−1
(
s(g)as(g)−1

)
, (A.24)

where ι denotes the inclusion A ↪→ E.

The importance of the second cohomology group H2
φ(G;A) is that it classifies the equiv-

alence classes of group extensions for which the above induced action is equivalent to the
action φ : G → Aut(A).

This classification also gives rise to a constructive procedure. Given an action φ : G →
Aut(A) and a 2-cocycle f ∈ H2

φ(G;A), one can construct a group extension Ef of G by A
by taking the underlying set to be the Cartesian product7 G× A and defining the group
multiplication to be:

(g, a) · (h, b) = (gh, a+ φ(g)b+ f(g, h)) . (A.25)
7It can be shown that the underlying set of every group extension is always such a Cartesian product.
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We will not show that this construction is well-defined, i.e. independent of the specific
representative f of the cohomology class in H2

φ(G;A), but we will show that the multi-
plication as defined is consistent by virtue of the cocycle condition.

Proof. Applying the multiplication defined above, we obtain:

(g, a) ·
[
(h, b) · (k, c)

]
= (g, a) ·

(
hk, b+ φ(h)c+ f(h, k)

)
=
(
ghk, a+ φ(g)b+ φ(g)φ(h)c+ φ(g)f(h, k) + f(g, hk)

)
=
(
ghk, a+ φ(g)b+ φ(gh)c+ φ(g)f(h, k) + f(g, hk)

)
.

If associativity holds, this should be equal to:[
(g, a) · (h, b)

]
· (k, c) =

(
gh, a+ φ(g)b+ f(g, h)

)
· (k, c)

=
(
ghk, a+ φ(g)b+ f(g, h) + φ(gh)c+ f(gh, k)

)
.

By the cocycle condition on f , these two expressions are the same and, hence, associativity
holds.

From Eq. (A.25), it is also clear that semidirect product groups G⋉φA are exactly those
corresponding to the trivial cocycle in H2

φ(G;A). A special type of group extensions is
obtained by considering cohomology with a trivial action. These are the so-called central
extensions, i.e. those for which A is isomorphic to a subgroup of the center Z(E). In this
case, the trivial cocycle corresponds to the direct product G× A.

A.2.3 Projective representations
Now, we could of course wonder whether there exists a relation between projective repre-
sentations (see Section A.1.2 above for a quick recap) and (central) extensions of a finite
group G by U(1), since both of these appear to be classified by the same object: the second
group cohomology with trivial coefficients H2(G; U(1)). The relation between projective
representations as group morphisms into PGL(V ) and Eq. (A.6) (where the representa-
tions are viewed as functions into GL(V )) is where the concept of group extension pops
up. The general linear group GL(V ) is a central extension of the projective linear group
PGL(V ) by the invertible complex numbers C×.

We will now explain how one obtains projective representations from central extensions
without going into too much detail. Given a projective representation ρ : G → PGL(V )
and any function s : PGL(V ) → GL(V ) such that s(g̃) maps to g̃ under the quotient map

π : GL(V ) −→ PGL(V ) ∼= GL(V )/C× (A.26)

for all g̃ ∈ PGL(V ), we can construct a function ψ : G → GL(V ) which projects onto ρ.
Using this function, we can reconstruct a linear representation of a central extension of
G by C× from any projective representation of G in the following way:

Consider the map ψ := s◦ρ : G → GL(V ) where ρ is a projective representation
of G on V determined by the 2-cocycle ω. A linear representation of the central
extension of G by C× determined by the same 2-cocycle ω is then constructed
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as follows:

σ : (g, a) 7→ eiaψ(g) . (A.27)

This construction implies that every projective representation of G induces a
linear representation of a central extension of G by C×.

Using Eq. (A.25) (with the trivial G-action), this construction gives the following multi-
plication rule:

σ
(
(g, a) · (h, b)

)
= σ

(
gh, a+ b+ ω(g, h)

)
= ei(a+b+ω(g,h))ψ(gh) , (A.28)

where f is the 2-cocycle defining the central extension of G. Because σ is supposed to be
a linear representation this should be equal to:

σ(g, a)σ(h, b) = eiaψ(g).eibψ(h) = ei(a+b)ψ(g)ψ(h) , (A.29)

where the last equality is valid because ψ takes values in the group of linear maps and
hence commutes with scalar multiplication (something which will be important in the
next section). These two expressions are equal since one can show that ψ(g)ψ(h)ψ(gh)−1

defines the same 2-cocycle as the projective representation ρ (see [6, 41] for the proofs).

Conversely every linear representation of the central extension induces a projective rep-
resentation and these constructions are inverses [56]. This result was originally proven by
Schur (in 1904) and he even proved the existence of a central extension8 such that every
projective representation of G lifts to a linear representation of this extension9, i.e. every
projective representation of G can be obtained from a linear representation of its represen-
tation group. This specific extension is referred to as the Schur cover of G. Furthermore,
what we referred to as the second cohomology H2(G; U(1)) is (up to isomorphism) the
Abelian group that extends G and is called the Schur multiplier in this context. It should
be noted that in Schur’s original work the Schur multiplier was given by the homology10

group H2(G;Z). For finite groups, with which he was concerned, this group is isomor-
phic to the one we considered. However for general groups this is not true and the right
group for the classification of projective representations is the second cohomology group
H2(G; U(1)).

A.2.4 Generalized representations
Now, we can try to generalize the preceding section to cohomology with a nontrivial
G-action on the coefficients. In this case, we have to take the action in Eq. (A.25) into
account. If we still require the map σ to be a linear representation, we obtain the following
equality:

ei(a+φ(g)b+f(g,h))ψ(gh) = ei(a+b)ψ(g)ψ(h) . (A.30)
8However, not by C×.
9Such groups are generally known as representation groups (see [41]).

10The exact definition of group homology is not relevant.
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The above formula certainly works out if:

ψ(g)eib = eiφ(g)bψ(g) . (A.31)

With the application to physics in mind, we will make a crucial assumption (and, thereby,
lose some generality). We will only consider cases for which the action φ is of order 2,
i.e. φ2 ≡ 1. In this case, we can consider the linear-antilinear representations as presented
in Section A.1.2 above. From the definition of an antilinear operator T , it readily follows
that

Teiχ = e−iχT . (A.32)

If we compare this with the condition that ψ is induced by a linear representation above,
we can see that these conditions are identical. Hence, we obtain the following relation:

The group extensions of G by U(1) with nontrivial action φ for which there
exists an order 2 subgroup H ⊂ G such thatφ(g) = 1 g ∈ H

φ(g) = −1 g ∈ G\H
(A.33)

are in bijection with the projective linear-antilinear representations of (G,H).

A rigorous analysis of this construction can be found in [10, 31], where the authors also
show that, as Schur did for ordinary projective representations, there exists for every
finite group G a representation group G̃ such that every projective UA representation of
(G,H) lifts to a UA representation of G̃. Although these papers are mainly concerned
with unitary-antiunitary representations, the classification is also valid for linear-antilinear
representations (at least in the case where G is finite). This can be seen by analyzing the
reasoning in [31], where it is clear that one does not need the operators to be (anti)unitary.
This should remind us of the fact that for finite groups (and compact Lie groups), all
representations are equivalent to unitary representations (again, see Section A.1.2 above).

A.2.5 Some useful methods
In this section, we give, for the sake of completeness, some of the most relevant theoretical
tools for working with group cohomology11. The first of these is the famous Künneth
formula.
Theorem A.1 (Künneth formula). Consider two groups G,K that act, respectively,
on Z-free modules12 A,B. The group cohomology of the direct product G × K with co-
efficients in A ⊗Z B is related to the group cohomologies of G and K in the following
way:

Hk(G×K;A⊗Z B) ∼=
k⊕
p=0

[
Hp(G;A) ⊗Z H

k−p(K;B)
]

×
k+1⊕
p=0

Tor(Hp(G;A), Hk−p+1(K;B)) , (A.34)

11And, in fact, for most cohomology theories (see [27] for more on this).
12These are modules that admit a basis over the ring of integers Z.
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where the operator Tor, which is called the torsion product, has the following properties13:

• Tor(A,B) = Tor(B,A),

• Tor(Z, A) = 0,

• Tor(Zm,Zn) = Zgcd(m,n),

• Tor(A×B,M) = Tor(A,M) × Tor(B,M), and

• Tor(A,M ×N) = Tor(A,M) × Tor(A,N).

In this thesis, we assumed that we can always decompose the symmetry groups as Gon-site×
GRT where Gon-site represents the on-site symmetry group and GRT

∼= Z2 × Z2 represents
the reflection/time-reversal symmetry group. The on-site symmetries act trivially, so
A = Z and, hence, A ⊗Z B ∼= B, which explains why we always work over the same
coefficients, no matter what the structure of the symmetry group is.

The second theorem is related to the long exact sequence in (group) cohomology. For
the sake of simplicity, we will only consider specific cases. Let G be a finite group and
consider the groups R,Z and U(1) as G-modules. These fit in a so-called (short) exact
sequence:

0 −→ Z ι−→ R exp−−→ U(1) −→ 0 . (A.35)

This means that the kernel of one morphism (arrow) is equal to the image of the previous
morphism (arrow). For the specific sequence above, this is easily seen. The inclusion
morphism ι : Z → R maps an integer to itself (but as an element of the reals) and, under
the exponential map exp : r 7→ ei2πr, these are exactly the elements mapped to the unit
in U(1). The theorem now says that this sequence induces a (long) exact sequence of the
form:

· · · −→ Hk(G;Z) −→ Hk(G;R) −→ Hk(G; U(1)) −→ Hk+1(G;Z) −→ · · · (A.36)

for any group G. This theorem has an important corollary. Namely, it can be shown that
the cohomology groups Hk(G;R) vanish for all values of k and, by the definition of an
exact sequence, this implies that there exists an isomorphism

Hk(G; U(1)) ∼= Hk+1(G;Z) . (A.37)

A similar relation based on the short exact sequence

0 −→ U(1) −→ C× −→ R× −→ 0 (A.38)

can be used to extract an induced long exact sequence which, by the vanishing of chomol-
ogy with coefficients in R, implies the following isomorphism:

H2(G; U(1)) ∼= H2(G;C×) . (A.39)

This explains why we could use U(1) coefficients when working with group cohomology,
while the theory of Schur, as explained in the previous sections, gave expression in terms

13A formal definition of this product is not relevant for this thesis.



Appendix A. Algebra 64

of C×.

Of course, there exist many more important theorems and formulae, for example the
theory of spectral sequences as introduced by Leray (see footnote 10 in the introduction).
In the context of group cohomology, this is given by the Lyndon–Hochschild–Serre spectral
sequence. See [27] for a formal exposition or [11] for an application to the classification of
SPT phases.
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Linear algebra

B.1 Graphical calculus
In this section, we will give a short introduction to the graphical calculus of tensor net-
works. For a more general and formal treatment, see for example [33].

We will denote a tensor (multilinear map) of rank n by a circle or square (generally a
vertex) with n wires attached to it. If we want to specify the indices of the tensor, these
will be placed at the end of a wire (see Fig. B.1a). Furthermore, we will not be concerned
with issues of raising/lowering indices as we are working with nonrelativistic theories. The
distinction between vectors and dual vectors is induced by an orientation of the diagram
as shown in Figs. B.1b and B.1c.

T ij

k

(a) Rank-3 tensor T i
jk.

V

(b) Vector.

V

(c) Dual vector.

Figure B.1: Graphical representation of tensor networks.

The contraction of two tensors is implemented by connecting a wire from one tensor
to a wire from the other tensor. For example, the trace of a linear map is obtained
by connecting the two wires of the same vertex and, hence, making a closed loop (see
Fig. B.2b). In the same way, we obtain the composition of two linear maps by connecting
one from the first map to a wire from the second map (see Fig. B.2c). Since the transpose
of a linear map X : V → W is a map X t : W ∗ → V ∗ between the dual spaces, hence,
because of how (dual) vectors are implemented, we can graphically represent the transpose
as in Fig. B.2a.

65
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X

(a) Transpose of a linear map.

X

(b) Trace of a linear map X.

X Y

(c) Composite of two linear maps X ◦ Y .

Figure B.2: Graphical manipulation of tensor networks.

B.2 Takagi factorization
For a complex symmetric matrix M , i.e. M ∈ Mn(C) and M t = M , there exists a
decomposition

M = UDU t , (B.1)

where U is a unitary matrix and D is a real, diagonal, skew-symmetric matrix. This
decomposition is called the Takagi factorization or Autonne–Takagi factorization. For
the proof, we follow a paper by Hua [28].

Proof. Consider the matrix MM which is a positive-definite Hermitian matrix and, hence,
can be brought to a diagonal form diag(a2

1, a
2
2, . . . , a

2
n) by conjugation with a unitary

matrix W :

XX = WMMW † = diag
(
a2

1, a
2
2, . . . , a

2
n

)
,

where X := WMW t and ai real for all i ≤ n. The matrix X0 = diag(a1, a2, . . . , an) also
satisfies this equation and, hence, we can write XX = X0X0 or equivalently:

(X−1
0 X)(XX−1

0 ) = 1 .

By the choice of X0 and the definition of X, these matrices are symmetric and, hence,
this can also be rewritten as:

(X−1
0 X)(X−1

0 X)† = 1

and so we obtain a unitary matrix A := X−1
0 X. By diagonalizing A, we obtain the square

root
√
A and, hence:

X = X0A = X0
√
A

2
.

Because both X and X0 are symmetric, we have X0A = AtX0, which implies X0
√
A =√

A
t
X0. After inserting this in the above equation, we obtain:

X =
√
A
t
X0

√
A
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or, by X = WMW t:[√
AW

]
M
[√

AW
]t

= X0 = diag(a1, a2, . . . , an) .

So, we obtain a diagonal matrix through congruence by a unitary matrix.

If we start from the Autonne–Takagi factorization, it is immediately clear that M can
also be written in the form

M = V V t (B.2)

by defining V = U
√
D. However, now, the matrix V is not required to be unitary

anymore.

If the initial symmetric matrix M was also unitary, then we can show that the matrix V
above is unitary. Because M = UDU t with U unitary, we see easily that the unitarity of
M implies the unitarity of D. Now, consider the square root

√
D. Because D is unitary,

this square root is also unitary and thus we find:

V † = (U
√
D)†

=
√
D

†
U †

=
√
D

−1
U−1

= (U
√
D)−1

= V −1 . (B.3)

B.3 Factorization of skew-symmetric matrices
The Autonne–Takagi factorization above can also be proven, starting from the Youla
normal form [21], which is a general normal form based on unitary congruence UXU t.
Starting from this normal form one can prove that any complex skew-symmetric matrix
M , i.e M ∈ M2n(C) and M t = −M , can be written as follows:

M = UΛU t , (B.4)

where U is unitary and Λ is block diagonal such that every block is of the form(
0 α

−α 0

)
(B.5)

for α ≥ 0. Equivalently, we can write M as follows:

M = U (diag(α1, . . . , αn) ⊗ ε)U t , (B.6)

where αi ≥ 0 for all i ≤ n and

ε := iσy =
(

0 1
−1 0

)
. (B.7)
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By using the property (A⊗B)(C ⊗D) = (AB) ⊗ (CD), we can rewrite the matrix Λ as
follows:

Λ = diag(α1, . . . , αn) ⊗ ε

=
[√

diag(α1, . . . , αn)
√

diag(α1, . . . , αn)
]

⊗ ε

=
[√

diag(α1, . . . , αn) ⊗ 12

]
(1n ⊗ ε)

[√
diag(α1, . . . , αn) ⊗ 12

]
. (B.8)

The outer factors are diagonal, and in particular symmetric, and can thus be absorbed in
the unitary matrices U to obtain a decomposition of the form

M = V (1n ⊗ ε)V t . (B.9)

Again, when using this form, we should pay attention to the fact that the matrix V is
not required to be unitary anymore. However, if M is unitary, we can show that V is also
unitary by an argument similar to the one given in the previous section.
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